This map contains property related information by parcel.This product can be found in the Municipality of Anchorage Maps and Apps Gallery.
This geologic map and preliminary cross sections of central and east Anchorage, Alaska, are based on previous mapping, limited new photointerpretation, and available subsurface data. Using PC-based Geographic Information System (GIS) software, the existing geologic map has been updated and simplified by adding recent fill deposits and combining units of similar genesis, composition, and age that are also recognizable in the subsurface. The GIS database consists of a USGS geologic map and over 4,000 geotechnical boreholes and water-well logs provided by numerous public and private sources. Geologic cross sections were developed by using GIS to project graphic lithologic logs into scaled vertical layouts along selected lines. Stratigraphic units were manually correlated using the log sections as guides. Identification and correlation of subsurface units are somewhat hampered by complex glacial geology, sparseness of deep boreholes, and significant variation in lithologic descriptions among many drillers. Although these limitations result in some generalized, undifferentiated geologic units, the differences among interpreted units are of the level desired by the geotechnical user community for highlighting engineering and seismic behavior.
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. The digital surface model represents percent canopy cover (between 0 and 1). Cover metric was computed in Fusion (McGaughey 2007), which assesses the percentage of total first returns within each cell that were returned from the canopy. For more specifics on Fusion Gridmetric outputs see the fusion manual (page 56).
Road Service Areas within the Municipality of Anchorage
description: In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. The dataset represents all classified laser returns from the lidar survey and their associated geospatial coordinates.; abstract: In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. The dataset represents all classified laser returns from the lidar survey and their associated geospatial coordinates.
Easements managed by the Land Records department within the Municipality of Anchorage
These data were automated to provide an accurate high-resolution historical shoreline of Kink Arm - Anchorage, Alaska suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Municipality of Anchorage Boundary
Geospatial data about Anchorage, Alaska Tax Parcels. Export to CAD, GIS, PDF, CSV and access via API.
This dataset displays the designated areas of water where a single vessel, sea plane, or other marine vessel may anchor. NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
These data provide an accurate high-resolution shoreline compiled from imagery of Port of Anchorage, AK . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas & lines. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)
Grid 100 for the Municipality of Anchorage
MOA Anchorage Subdivisions
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. This digital surface model (mean_DSM) represents mean above-ground height of vegetation returns.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. Lake polygons represent areas of water bodies (excluding streams and rivers) > 150 square meteres, present at the time of lidar data collection.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. This digital surface model represents coefficient of variation of the above ground height of vegetation returns.
Geospatial data about Anchorage, Alaska Address Points. Export to CAD, GIS, PDF, CSV and access via API.
These data were automated to provide an accurate high-resolution historical shoreline of Anchorage, AK suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution...
This map contains property related information by parcel.This product can be found in the Municipality of Anchorage Maps and Apps Gallery.