Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset simulates anonymized mobile screen time and app usage data collected from Android/iOS users over a 3-month period (Jan–April 2024). It captures daily usage trends across various app categories including:
Productivity: Google Docs, Notion, Slack
Entertainment: YouTube, Netflix, TikTok
Social Media: Instagram, WhatsApp, Facebook
Utilities: Chrome, Gmail, Maps
For YouTube, additional engagement statistics such as views, likes, and comments are included to analyze video popularity and content consumption behavior.
The dataset enables exploration of:
Productivity vs. entertainment screen time patterns
Daily usage fluctuations
App-specific user engagement
Correlation between time spent and user interactions
YouTube content virality metrics
This is a great resource for:
EDA projects
Behavioral clustering
Dashboard development
Time series and anomaly detection
Building recommendation or focus-assistive apps
Facebook
TwitterThis dataset was created by Michael Lomuscio
Facebook
TwitterAndroid maintained its position as the leading mobile operating system worldwide in the third quarter of 2025 with a market share of about ***** percent. Android's closest rival, Apple's iOS, had a market share of approximately ***** percent during the same period. The leading mobile operating systems Both unveiled in 2007, Google’s Android and Apple’s iOS have evolved through incremental updates introducing new features and capabilities. The latest version of iOS, iOS 18, was released in September 2024, while the most recent Android iteration, Android 15, was made available in September 2023. A key difference between the two systems concerns hardware - iOS is only available on Apple devices, whereas Android ships with devices from a range of manufacturers such as Samsung, Google and OnePlus. In addition, Apple has had far greater success in bringing its users up to date. As of February 2024, ** percent of iOS users had iOS 17 installed, while in the same month only ** percent of Android users ran the latest version. The rise of the smartphone From around 2010, the touchscreen smartphone revolution had a major impact on sales of basic feature phones, as the sales of smartphones increased from *** million units in 2008 to **** billion units in 2023. In 2020, smartphone sales decreased to **** billion units due to the coronavirus (COVID-19) pandemic. Apple, Samsung, and lately also Xiaomi, were the big winners in this shift towards smartphones, with BlackBerry and Nokia among those unable to capitalize.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Benchmarks allow for easy comparison between multiple devices by scoring their performance on a standardized series of tests, and they are useful in many instances: When buying a new phone or tablet
Newest data as of May 3rd, 2022. This dataset contains benchmarks of Android and iOS devices
Benchmark apps gives your device an overall numerical score as well as individual scores for each test it performs. The overall score is created by adding the results of those individual scores. These score numbers don't mean much on their own, they're just helpful for comparing different devices. For example, if your device's score is 300000, a device with a score of 600000 is about twice as fast. You can use individual test scores to compare the relative performance of specific parts of different devices. For example, you could compare how fast your phone's storage performs compared to another phone's storage.
The first part of the overall score is your CPU score. The CPU score in turn includes the output of CPU Mathematical Operations, CPU Common Algorithms, and CPU Multi-Core. In simpler words, the CPU score means how fast your phone processes commands. Your device's central processing unit (CPU) does most of the number-crunching. A faster CPU can run apps faster, so everything on your device will seem faster. Of course, once you get to a certain point, CPU speed won't affect performance much. However, a faster CPU may still help when running more demanding applications, such as high-end games.
The second part of the overall score is your GPU score. This score is comprised of the output of graphical components like Metal, OpenGL or Vulkan, depending on your device. The GPU score means how well your phone displays 2D and 3D graphics. Your device's graphics processing unit (GPU) handles accelerated graphics. When you play a game, your GPU kicks into gear and renders the 3D graphics or accelerates the shiny 2D graphics. Many interface animations and other transitions also use the GPU. The GPU is optimized for these sorts of graphics operations. The CPU could perform them, but it's more general-purpose and would take more time and battery power. You can say that your GPU does the graphics number-crunching, so a higher score here is better.
The third part of the overall score is your MEM score. The MEM score includes the results of the output of RAM Access, ROM APP IO, ROM Sequential Read and Write, and ROM Random Access. In simpler words, the MEM score means how fast and how much memory your phone possesses. RAM stands for random-access memory; while ROM stands for read-only memory. Your device uses RAM as working memory, while flash storage or an internal SD card is used for long-term storage. The faster it can write to and read data from its RAM, the faster your device will perform. Your RAM is constantly being used on your device, whatever you're doing. While RAM is volatile in nature, ROM is its opposite. RAM mostly stores temporary data, while ROM is used to store permanent data like the firmware of your phone. Both the RAM and ROM make up the memory of your phone, helping it to perform tasks efficiently.
The fourth and final part of the overall score is your UX score. The UX score is made up of the results of the output of the Data Security, Data Processing, Image Processing, User Experience, and Video CTS and Decode tests. The UX score means an overall score that represents how the device's "user experience" will be in the real world. It's a number you can look at to get a feel for a device's overall performance without digging into the above benchmarks or relying too much on the overall score.
Data scrapped from AnTuTu, cross-platform adjusted using 3DMark and Geekbench
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset offers a comprehensive overview of the iPhone's journey in the global smartphone market from 2010 to 2024 . It includes:
📊 Number of iPhone Users: Total users worldwide and within the USA. 📈 Sales Figures: Yearly iPhone sales data. 🏆 Market Share: Comparison of iOS and Android market shares across years. This dataset is perfect for:
Market forecasting and trend analysis. Competitive landscape studies between iOS and Android. Consumer behavior research in the tech industry. Whether you're a data scientist, market analyst, or tech enthusiast, this dataset provides valuable insights to support your research and projects.
Facebook
TwitterThis dataset encompasses mobile smartphone application (app) usage, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or surveying to understand the why. iOS and Android operating system coverage.
Facebook
TwitterThis dataset encompasses mobile web clickstream behavior on any browser, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or path to purchase and consumer journey understanding. Full URL deliverable available including searches.
Facebook
TwitterSocial media companies are starting to offer users the option to subscribe to their platforms in exchange for monthly fees. Until recently, social media has been predominantly free to use, with tech companies relying on advertising as their main revenue generator. However, advertising revenues have been dropping following the COVID-induced boom. As of July 2023, Meta Verified is the most costly of the subscription services, setting users back almost 15 U.S. dollars per month on iOS or Android. Twitter Blue costs between eight and 11 U.S. dollars per month and ensures users will receive the blue check mark, and have the ability to edit tweets and have NFT profile pictures. Snapchat+, drawing in four million users as of the second quarter of 2023, boasts a Story re-watch function, custom app icons, and a Snapchat+ badge.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset has been artificially generated to mimic real-world user interactions within a mobile application. It contains 100,000 rows of data, each row of which represents a single event or action performed by a synthetic user. The dataset was designed to capture many of the attributes commonly tracked by app analytics platforms, such as device details, network information, user demographics, session data, and event-level interactions.
User & Session Metadata
User ID: A unique integer identifier for each synthetic user. Session ID: Randomly generated session identifiers (e.g., S-123456), capturing the concept of user sessions. IP Address: Fake IP addresses generated via Faker to simulate different network origins. Timestamp: Randomized timestamps (within the last 30 days) indicating when each interaction occurred. Session Duration: An approximate measure (in seconds) of how long a user remained active. Device & Technical Details
Device OS & OS Version: Simulated operating systems (Android/iOS) with plausible version numbers. Device Model: Common phone models (e.g., “Samsung Galaxy S22,” “iPhone 14 Pro,” etc.). Screen Resolution: Typical screen resolutions found in smartphones (e.g., “1080x1920”). Network Type: Indicates whether the user was on Wi-Fi, 5G, 4G, or 3G. Location & Locale
Location Country & City: Random global locations generated using Faker. App Language: Represents the user’s app language setting (e.g., “en,” “es,” “fr,” etc.). User Properties
Battery Level: The phone’s battery level as a percentage (0–100). Memory Usage (MB): Approximate memory consumption at the time of the event. Subscription Status: Boolean flag indicating if the user is subscribed to a premium service. User Age: Random integer ranging from teenagers to seniors (13–80). Phone Number: Fake phone numbers generated via Faker. Push Enabled: Boolean flag indicating if the user has push notifications turned on. Event-Level Interactions
Event Type: The action taken by the user (e.g., “click,” “view,” “scroll,” “like,” “share,” etc.). Event Target: The UI element or screen component interacted with (e.g., “home_page_banner,” “search_bar,” “notification_popup”). Event Value: A numeric field indicating additional context for the event (e.g., intensity, count, rating). App Version: Simulated version identifier for the mobile application (e.g., “4.2.8”). Data Quality & “Noise” To better approximate real-world data, 1% of all fields have been intentionally “corrupted” or altered:
Typos and Misspellings: Random single-character edits, e.g., “Andro1d” instead of “Android.” Missing Values: Some cells might be blank (None) to reflect dropped or unrecorded data. Random String Injections: Occasional random alphanumeric strings inserted where they don’t belong. These intentional discrepancies can help data scientists practice data cleaning, outlier detection, and data wrangling techniques.
Data Cleaning & Preprocessing: Ideal for practicing how to handle missing values, inconsistent data, and noise in a realistic scenario. Analytics & Visualization: Demonstrate user interaction funnels, session durations, usage by device/OS, etc. Machine Learning & Modeling: Suitable for building classification or clustering models (e.g., user segmentation, event classification). Simulation for Feature Engineering: Experiment with deriving new features (e.g., session frequency, average battery drain, etc.).
Synthetic Data: All entries (users, device info, IPs, phone numbers, etc.) are artificially generated and do not correspond to real individuals. Privacy & Compliance: Since no real personal data is present, there are no direct privacy concerns. However, always handle synthetic data ethically.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Differences between operating systems (Android, iOS, Mac OS, and Windows; Study 2).
Facebook
TwitterThe number of mobile broadband connections in the Philippines was forecast to continuously increase between 2024 and 2029 by in total 18.3 million connections (+20.46 percent). After the ninth consecutive increasing year, the number of connections is estimated to reach 107.69 million connections and therefore a new peak in 2029. Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections in countries like Vietnam and Laos.
Facebook
TwitterNote: This dataset has been archived and is no longer being updated. COVID Alert CT is Connecticut's voluntary, anonymous, exposure-notification smartphone app. If downloaded, the app will alert users if they have come into close contact with somebody who tests positive for COVID-19. This dataset includes the cumulative and weekly activations for COVID Alert CT for iOS and Android smartphones. The location of app users is not tracked--the app uses Bluetooth technology to detect when another person with the same app comes within 6 feet. The phones exchange a secure code with the each other to record that they were near. The number of codes issued and claimed is also included in this dataset. Data presented are based on a weekly reporting period (Sunday - Saturday). All data are preliminary and are subject to change. Additional information on COVID-19 Contact Tracing can be found here: https://portal.ct.gov/coronavirus/covidalertCT/homepage
Facebook
TwitterPercentage of smartphone users by selected smartphone use habits in a typical day.
Facebook
TwitterInstall App dataset provides comprehensive, first-party app install intelligence across the APAC region, sourced from AI-driven OS-level keyboard and utility applications. It captures highly granular insights into mobile app installations, updates, and user behavior, enabling precise market analytics, attribution tracking, and growth optimization.
Each record includes hashed device and advertising identifiers, application metadata (package name, app version, category), and timestamped install/update events. The field is_new_install indicates whether the app installation is first-time or an existing reinstall/update, helping distinguish between new user acquisition and returning user activity — a critical signal for campaign performance and user lifecycle analytics.
Alongside app-level insights, the dataset provides detailed device intelligence — including manufacturer, model, OS type/version, language, and user agent — combined with IP-based location data (country, region, city) and daily server timestamps for freshness tracking.
All data is hashed, privacy-compliant, and refreshed daily, making it ideal for organizations seeking high-quality, real-world app install signals across Android and iOS ecosystems.
📊 Key Features • First-party, consented data from OS-level applications • Hashed identifiers (device_id, advertising_id) for privacy-safe integration • Install and update timestamps for temporal and behavioral analysis • is_new_install flag to separate new installs from reinstalls or app updates • Comprehensive app, device, and location attributes • Daily refreshed dataset ensuring data accuracy and timeliness
⚙️ Primary Use Cases • Mobile Attribution & User Acquisition Tracking – Identify new users vs. re-engaged ones via the is_new_install flag • Market Intelligence & Competitive Benchmarking – Analyze install trends across app categories and geographies • Audience Segmentation – Classify users by device type, OS version, and app install behavior • Ad Targeting Optimization – Refine lookalike and re-engagement audiences with verified install data • Product & Growth Analytics – Study retention, uninstall rates, and user churn patterns • App Store Strategy – Evaluate app update frequency and version distribution
📍 Industries Benefiting • Ad-Tech & Mar-Tech Platforms • Mobile App Publishers & Developers • Telecom Operators & Device OEMs • Market Research & Analytics Firms • E-commerce, Fintech & Gaming Companies • Media, Entertainment & OTT Platforms
With millions of verified app installs tracked across Android and iOS, this AI-powered, consent-based dataset delivers actionable insights into app discovery, engagement, and retention, driving smarter decisions in mobile marketing, audience intelligence, and growth analytics.
Facebook
TwitterThis dataset encompasses mobile app usage, web clickstream and location visitation behavior, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). The only omnichannel meter at scale representing iOS and Android platforms.
Facebook
Twitterhttps://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/
User Interface (Navigation) Corpus
Overview
This dataset serves as a collection of various images of, videos and metadata of mobile (both iOS and Android) and web user interfaces as well as tags and text extractions associated to them. Dataset also includes user interface navigation annotations and videos related to them. One of the possible use cases of this dataset is training a UI navigation agent.
Dataset Structure
The resources of this dataset are packed… See the full description on the dataset page: https://huggingface.co/datasets/teleren/ui-navigation-corpus.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a comprehensive analysis of mobile device usage patterns and user behavior classification. It contains 700 samples of user data, including metrics such as app usage time, screen-on time, battery drain, and data consumption. Each entry is categorized into one of five user behavior classes, ranging from light to extreme usage, allowing for insightful analysis and modeling.
Key Features: - User ID: Unique identifier for each user. - Device Model: Model of the user's smartphone. - Operating System: The OS of the device (iOS or Android). - App Usage Time: Daily time spent on mobile applications, measured in minutes. - Screen On Time: Average hours per day the screen is active. - Battery Drain: Daily battery consumption in mAh. - Number of Apps Installed: Total apps available on the device. - Data Usage: Daily mobile data consumption in megabytes. - Age: Age of the user. - Gender: Gender of the user (Male or Female). - User Behavior Class: Classification of user behavior based on usage patterns (1 to 5).
This dataset is ideal for researchers, data scientists, and analysts interested in understanding mobile user behavior and developing predictive models in the realm of mobile technology and applications. This Dataset was primarily designed to implement machine learning algorithms and is not a reliable source for a paper or article.
Facebook
TwitterSmartParking is a trial designed to help ease traffic congestion and lower travel times by using real-time bay sensor data and the ParkCBR app to show drivers where they are more likely to find available car parking in the Manuka shopping precinct. Android users can download the ParkCBR from GooglePlay Store and iOS users from the AppStore. The Lots dataset shows the locations and describes each lot.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 1.54(USD Billion) |
| MARKET SIZE 2025 | 1.76(USD Billion) |
| MARKET SIZE 2035 | 6.5(USD Billion) |
| SEGMENTS COVERED | Application, Platform, End User, Features, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Increasing chronic disease prevalence, Growing smartphone adoption, Rise in healthcare digitization, Enhanced patient engagement, Expanding telehealth services |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | CareZone, MediSafe Inc, Round Health, RxSaver, Medocino, Pillcheck, SimpleDose, MyTherapy, Pill Reminder, HealthNet, DoseCast, MyMedSchedule, Medicine Tracker, Take Your Meds, Medisafe, Pillboxie |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Growing aging population demand, Increased chronic disease prevalence, Integration with wearable devices, Expansion into telehealth services, Rising healthcare consumerism trends |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 14.0% (2025 - 2035) |
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
The ever-changing mobile landscape is a challenging space to navigate. . The percentage of mobile over desktop is only increasing. Android holds about 53.2% of the smartphone market, while iOS is 43%. To get more people to download your app, you need to make sure they can easily find your app. Mobile app analytics is a great way to understand the existing strategy to drive growth and retention of future user.
With million of apps around nowadays, the following data set has become very key to getting top trending apps in iOS app store. This data set contains more than 7000 Apple iOS mobile application details. The data was extracted from the iTunes Search API at the Apple Inc website. R and linux web scraping tools were used for this study.
Interactive full Shiny app can be seen here( https://multiscal.shinyapps.io/appStore/)
Data collection date (from API); July 2017
Dimension of the data set; 7197 rows and 16 columns
"id" : App ID
"track_name": App Name
"size_bytes": Size (in Bytes)
"currency": Currency Type
"price": Price amount
"rating_count_tot": User Rating counts (for all version)
"rating_count_ver": User Rating counts (for current version)
"user_rating" : Average User Rating value (for all version)
"user_rating_ver": Average User Rating value (for current version)
"ver" : Latest version code
"cont_rating": Content Rating
"prime_genre": Primary Genre
"sup_devices.num": Number of supporting devices
"ipadSc_urls.num": Number of screenshots showed for display
"lang.num": Number of supported languages
"vpp_lic": Vpp Device Based Licensing Enabled
The data was extracted from the iTunes Search API at the Apple Inc website. R and linux web scraping tools were used for this study.
Reference: R package
From github, with
devtools::install_github("ramamet/applestoreR")
Copyright (c) 2018 Ramanathan Perumal
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset simulates anonymized mobile screen time and app usage data collected from Android/iOS users over a 3-month period (Jan–April 2024). It captures daily usage trends across various app categories including:
Productivity: Google Docs, Notion, Slack
Entertainment: YouTube, Netflix, TikTok
Social Media: Instagram, WhatsApp, Facebook
Utilities: Chrome, Gmail, Maps
For YouTube, additional engagement statistics such as views, likes, and comments are included to analyze video popularity and content consumption behavior.
The dataset enables exploration of:
Productivity vs. entertainment screen time patterns
Daily usage fluctuations
App-specific user engagement
Correlation between time spent and user interactions
YouTube content virality metrics
This is a great resource for:
EDA projects
Behavioral clustering
Dashboard development
Time series and anomaly detection
Building recommendation or focus-assistive apps