52 datasets found
  1. Screen Time and App Usage Dataset (iOS/Android)

    • kaggle.com
    zip
    Updated Apr 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Yadav (2025). Screen Time and App Usage Dataset (iOS/Android) [Dataset]. https://www.kaggle.com/datasets/khushikyad001/screen-time-and-app-usage-dataset-iosandroid
    Explore at:
    zip(157038 bytes)Available download formats
    Dataset updated
    Apr 19, 2025
    Authors
    Khushi Yadav
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset simulates anonymized mobile screen time and app usage data collected from Android/iOS users over a 3-month period (Jan–April 2024). It captures daily usage trends across various app categories including:

    Productivity: Google Docs, Notion, Slack

    Entertainment: YouTube, Netflix, TikTok

    Social Media: Instagram, WhatsApp, Facebook

    Utilities: Chrome, Gmail, Maps

    For YouTube, additional engagement statistics such as views, likes, and comments are included to analyze video popularity and content consumption behavior.

    The dataset enables exploration of:

    Productivity vs. entertainment screen time patterns

    Daily usage fluctuations

    App-specific user engagement

    Correlation between time spent and user interactions

    YouTube content virality metrics

    This is a great resource for:

    EDA projects

    Behavioral clustering

    Dashboard development

    Time series and anomaly detection

    Building recommendation or focus-assistive apps

  2. iPhone or Android

    • kaggle.com
    zip
    Updated Mar 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Lomuscio (2021). iPhone or Android [Dataset]. https://www.kaggle.com/datasets/mlomuscio/iphone-or-android
    Explore at:
    zip(860 bytes)Available download formats
    Dataset updated
    Mar 18, 2021
    Authors
    Michael Lomuscio
    Description

    Dataset

    This dataset was created by Michael Lomuscio

    Contents

  3. Market share of mobile operating systems worldwide 2009-2025, by quarter

    • statista.com
    • abripper.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Market share of mobile operating systems worldwide 2009-2025, by quarter [Dataset]. https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Android maintained its position as the leading mobile operating system worldwide in the third quarter of 2025 with a market share of about ***** percent. Android's closest rival, Apple's iOS, had a market share of approximately ***** percent during the same period. The leading mobile operating systems Both unveiled in 2007, Google’s Android and Apple’s iOS have evolved through incremental updates introducing new features and capabilities. The latest version of iOS, iOS 18, was released in September 2024, while the most recent Android iteration, Android 15, was made available in September 2023. A key difference between the two systems concerns hardware - iOS is only available on Apple devices, whereas Android ships with devices from a range of manufacturers such as Samsung, Google and OnePlus. In addition, Apple has had far greater success in bringing its users up to date. As of February 2024, ** percent of iOS users had iOS 17 installed, while in the same month only ** percent of Android users ran the latest version. The rise of the smartphone From around 2010, the touchscreen smartphone revolution had a major impact on sales of basic feature phones, as the sales of smartphones increased from *** million units in 2008 to **** billion units in 2023. In 2020, smartphone sales decreased to **** billion units due to the coronavirus (COVID-19) pandemic. Apple, Samsung, and lately also Xiaomi, were the big winners in this shift towards smartphones, with BlackBerry and Nokia among those unable to capitalize.

  4. 🤖Android vs iOS🍎 Device Benchmarks📊

    • kaggle.com
    zip
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    💥Alien💥 (2022). 🤖Android vs iOS🍎 Device Benchmarks📊 [Dataset]. https://www.kaggle.com/datasets/alanjo/android-vs-ios-devices-crossplatform-benchmarks/
    Explore at:
    zip(4989 bytes)Available download formats
    Dataset updated
    Sep 2, 2022
    Authors
    💥Alien💥
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Compilation Dataset: Smartphone Processors Ranking & Scores

    Context

    Benchmarks allow for easy comparison between multiple devices by scoring their performance on a standardized series of tests, and they are useful in many instances: When buying a new phone or tablet

    Content

    Newest data as of May 3rd, 2022. This dataset contains benchmarks of Android and iOS devices

    1. Total Score

    Benchmark apps gives your device an overall numerical score as well as individual scores for each test it performs. The overall score is created by adding the results of those individual scores. These score numbers don't mean much on their own, they're just helpful for comparing different devices. For example, if your device's score is 300000, a device with a score of 600000 is about twice as fast. You can use individual test scores to compare the relative performance of specific parts of different devices. For example, you could compare how fast your phone's storage performs compared to another phone's storage.

    2. CPU Score

    The first part of the overall score is your CPU score. The CPU score in turn includes the output of CPU Mathematical Operations, CPU Common Algorithms, and CPU Multi-Core. In simpler words, the CPU score means how fast your phone processes commands. Your device's central processing unit (CPU) does most of the number-crunching. A faster CPU can run apps faster, so everything on your device will seem faster. Of course, once you get to a certain point, CPU speed won't affect performance much. However, a faster CPU may still help when running more demanding applications, such as high-end games.

    3. GPU Score

    The second part of the overall score is your GPU score. This score is comprised of the output of graphical components like Metal, OpenGL or Vulkan, depending on your device. The GPU score means how well your phone displays 2D and 3D graphics. Your device's graphics processing unit (GPU) handles accelerated graphics. When you play a game, your GPU kicks into gear and renders the 3D graphics or accelerates the shiny 2D graphics. Many interface animations and other transitions also use the GPU. The GPU is optimized for these sorts of graphics operations. The CPU could perform them, but it's more general-purpose and would take more time and battery power. You can say that your GPU does the graphics number-crunching, so a higher score here is better.

    4. MEM score

    The third part of the overall score is your MEM score. The MEM score includes the results of the output of RAM Access, ROM APP IO, ROM Sequential Read and Write, and ROM Random Access. In simpler words, the MEM score means how fast and how much memory your phone possesses. RAM stands for random-access memory; while ROM stands for read-only memory. Your device uses RAM as working memory, while flash storage or an internal SD card is used for long-term storage. The faster it can write to and read data from its RAM, the faster your device will perform. Your RAM is constantly being used on your device, whatever you're doing. While RAM is volatile in nature, ROM is its opposite. RAM mostly stores temporary data, while ROM is used to store permanent data like the firmware of your phone. Both the RAM and ROM make up the memory of your phone, helping it to perform tasks efficiently.

    5. UX Score

    The fourth and final part of the overall score is your UX score. The UX score is made up of the results of the output of the Data Security, Data Processing, Image Processing, User Experience, and Video CTS and Decode tests. The UX score means an overall score that represents how the device's "user experience" will be in the real world. It's a number you can look at to get a feel for a device's overall performance without digging into the above benchmarks or relying too much on the overall score.

    Acknowledgements

    Data scrapped from AnTuTu, cross-platform adjusted using 3DMark and Geekbench

    If you enjoyed this dataset, here's some similar datasets you may like 😎

  5. Global iPhone & Smartphone Market (2011-2023)

    • kaggle.com
    zip
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MohamedFahim (2024). Global iPhone & Smartphone Market (2011-2023) [Dataset]. https://www.kaggle.com/datasets/mohamedfahim003/global-iphone-and-smartphone-market-2011-2023
    Explore at:
    zip(550 bytes)Available download formats
    Dataset updated
    Aug 12, 2024
    Authors
    MohamedFahim
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset offers a comprehensive overview of the iPhone's journey in the global smartphone market from 2010 to 2024 . It includes:

    📊 Number of iPhone Users: Total users worldwide and within the USA. 📈 Sales Figures: Yearly iPhone sales data. 🏆 Market Share: Comparison of iOS and Android market shares across years. This dataset is perfect for:

    Market forecasting and trend analysis. Competitive landscape studies between iOS and Android. Consumer behavior research in the tech industry. Whether you're a data scientist, market analyst, or tech enthusiast, this dataset provides valuable insights to support your research and projects.

  6. m

    Mobile App Usage | 1st Party | 3B+ events verified, US consumers |...

    • omnitrafficdata.mfour.com
    • datarade.ai
    Updated Dec 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MFour (2021). Mobile App Usage | 1st Party | 3B+ events verified, US consumers | Event-level iOS & Android [Dataset]. https://omnitrafficdata.mfour.com/products/mobile-app-usage-1st-party-3b-events-verified-us-consum-mfour
    Explore at:
    Dataset updated
    Dec 13, 2021
    Dataset authored and provided by
    MFour
    Area covered
    United States
    Description

    This dataset encompasses mobile smartphone application (app) usage, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or surveying to understand the why. iOS and Android operating system coverage.

  7. m

    Mobile Web Clickstream | 1st Party | 3B+ events verified, US consumers |...

    • omnitrafficdata.mfour.com
    • datarade.ai
    Updated Aug 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MFour (2021). Mobile Web Clickstream | 1st Party | 3B+ events verified, US consumers | Safari, Chrome, any iOS or Android [Dataset]. https://omnitrafficdata.mfour.com/products/mobile-web-clickstream-1st-party-3b-events-verified-us-mfour
    Explore at:
    Dataset updated
    Aug 1, 2021
    Dataset authored and provided by
    MFour
    Area covered
    United States
    Description

    This dataset encompasses mobile web clickstream behavior on any browser, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or path to purchase and consumer journey understanding. Full URL deliverable available including searches.

  8. Global social media subscriptions comparison 2023

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Global social media subscriptions comparison 2023 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Social media companies are starting to offer users the option to subscribe to their platforms in exchange for monthly fees. Until recently, social media has been predominantly free to use, with tech companies relying on advertising as their main revenue generator. However, advertising revenues have been dropping following the COVID-induced boom. As of July 2023, Meta Verified is the most costly of the subscription services, setting users back almost 15 U.S. dollars per month on iOS or Android. Twitter Blue costs between eight and 11 U.S. dollars per month and ensures users will receive the blue check mark, and have the ability to edit tweets and have NFT profile pictures. Snapchat+, drawing in four million users as of the second quarter of 2023, boasts a Story re-watch function, custom app icons, and a Snapchat+ badge.

  9. User mobile app interaction data

    • kaggle.com
    zip
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Moslemani (2025). User mobile app interaction data [Dataset]. https://www.kaggle.com/datasets/mohamedmoslemani/user-mobile-app-interaction-data/data
    Explore at:
    zip(6809111 bytes)Available download formats
    Dataset updated
    Jan 15, 2025
    Authors
    Mohamed Moslemani
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset has been artificially generated to mimic real-world user interactions within a mobile application. It contains 100,000 rows of data, each row of which represents a single event or action performed by a synthetic user. The dataset was designed to capture many of the attributes commonly tracked by app analytics platforms, such as device details, network information, user demographics, session data, and event-level interactions.

    Key Features Included

    User & Session Metadata

    User ID: A unique integer identifier for each synthetic user. Session ID: Randomly generated session identifiers (e.g., S-123456), capturing the concept of user sessions. IP Address: Fake IP addresses generated via Faker to simulate different network origins. Timestamp: Randomized timestamps (within the last 30 days) indicating when each interaction occurred. Session Duration: An approximate measure (in seconds) of how long a user remained active. Device & Technical Details

    Device OS & OS Version: Simulated operating systems (Android/iOS) with plausible version numbers. Device Model: Common phone models (e.g., “Samsung Galaxy S22,” “iPhone 14 Pro,” etc.). Screen Resolution: Typical screen resolutions found in smartphones (e.g., “1080x1920”). Network Type: Indicates whether the user was on Wi-Fi, 5G, 4G, or 3G. Location & Locale

    Location Country & City: Random global locations generated using Faker. App Language: Represents the user’s app language setting (e.g., “en,” “es,” “fr,” etc.). User Properties

    Battery Level: The phone’s battery level as a percentage (0–100). Memory Usage (MB): Approximate memory consumption at the time of the event. Subscription Status: Boolean flag indicating if the user is subscribed to a premium service. User Age: Random integer ranging from teenagers to seniors (13–80). Phone Number: Fake phone numbers generated via Faker. Push Enabled: Boolean flag indicating if the user has push notifications turned on. Event-Level Interactions

    Event Type: The action taken by the user (e.g., “click,” “view,” “scroll,” “like,” “share,” etc.). Event Target: The UI element or screen component interacted with (e.g., “home_page_banner,” “search_bar,” “notification_popup”). Event Value: A numeric field indicating additional context for the event (e.g., intensity, count, rating). App Version: Simulated version identifier for the mobile application (e.g., “4.2.8”). Data Quality & “Noise” To better approximate real-world data, 1% of all fields have been intentionally “corrupted” or altered:

    Typos and Misspellings: Random single-character edits, e.g., “Andro1d” instead of “Android.” Missing Values: Some cells might be blank (None) to reflect dropped or unrecorded data. Random String Injections: Occasional random alphanumeric strings inserted where they don’t belong. These intentional discrepancies can help data scientists practice data cleaning, outlier detection, and data wrangling techniques.

    Usage & Applications

    Data Cleaning & Preprocessing: Ideal for practicing how to handle missing values, inconsistent data, and noise in a realistic scenario. Analytics & Visualization: Demonstrate user interaction funnels, session durations, usage by device/OS, etc. Machine Learning & Modeling: Suitable for building classification or clustering models (e.g., user segmentation, event classification). Simulation for Feature Engineering: Experiment with deriving new features (e.g., session frequency, average battery drain, etc.).

    Important Notes & Disclaimer

    Synthetic Data: All entries (users, device info, IPs, phone numbers, etc.) are artificially generated and do not correspond to real individuals. Privacy & Compliance: Since no real personal data is present, there are no direct privacy concerns. However, always handle synthetic data ethically.

  10. Differences between operating systems (Android, iOS, Mac OS, and Windows;...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Friedrich M. Götz; Stefan Stieger; Ulf-Dietrich Reips (2023). Differences between operating systems (Android, iOS, Mac OS, and Windows; Study 2). [Dataset]. http://doi.org/10.1371/journal.pone.0176921.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Friedrich M. Götz; Stefan Stieger; Ulf-Dietrich Reips
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Differences between operating systems (Android, iOS, Mac OS, and Windows; Study 2).

  11. Number of mobile broadband connections in the Philippines 2014-2029

    • statista.com
    • abripper.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department, Number of mobile broadband connections in the Philippines 2014-2029 [Dataset]. https://www.statista.com/topics/8230/smartphones-market-in-the-philippines/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Philippines
    Description

    The number of mobile broadband connections in the Philippines was forecast to continuously increase between 2024 and 2029 by in total 18.3 million connections (+20.46 percent). After the ninth consecutive increasing year, the number of connections is estimated to reach 107.69 million connections and therefore a new peak in 2029. Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections in countries like Vietnam and Laos.

  12. d

    COVID-19 Contact Tracing: COVID Alert CT Summary by Week - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). COVID-19 Contact Tracing: COVID Alert CT Summary by Week - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-contact-tracing-covid-alert-ct-summary-by-week
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    Note: This dataset has been archived and is no longer being updated. COVID Alert CT is Connecticut's voluntary, anonymous, exposure-notification smartphone app. If downloaded, the app will alert users if they have come into close contact with somebody who tests positive for COVID-19. This dataset includes the cumulative and weekly activations for COVID Alert CT for iOS and Android smartphones. The location of app users is not tracked--the app uses Bluetooth technology to detect when another person with the same app comes within 6 feet. The phones exchange a secure code with the each other to record that they were near. The number of codes issued and claimed is also included in this dataset. Data presented are based on a weekly reporting period (Sunday - Saturday). All data are preliminary and are subject to change. Additional information on COVID-19 Contact Tracing can be found here: https://portal.ct.gov/coronavirus/covidalertCT/homepage

  13. Smartphone use and smartphone habits by gender and age group, inactive

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Smartphone use and smartphone habits by gender and age group, inactive [Dataset]. http://doi.org/10.25318/2210011501-eng
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Percentage of smartphone users by selected smartphone use habits in a typical day.

  14. d

    Install Data APAC - Installed Apps (1st Party Data w/90M records)

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI Keyboard, Install Data APAC - Installed Apps (1st Party Data w/90M records) [Dataset]. https://datarade.ai/data-products/1st-party-data-app-usage-installed-apps-app-session-bobble-ai
    Explore at:
    .json, .csv, .xls, .parquetAvailable download formats
    Dataset authored and provided by
    AI Keyboard
    Area covered
    Oman, Germany, Netherlands, Pakistan, United Arab Emirates, Nepal, Bangladesh, Brazil, Philippines, France
    Description

    Install App dataset provides comprehensive, first-party app install intelligence across the APAC region, sourced from AI-driven OS-level keyboard and utility applications. It captures highly granular insights into mobile app installations, updates, and user behavior, enabling precise market analytics, attribution tracking, and growth optimization.

    Each record includes hashed device and advertising identifiers, application metadata (package name, app version, category), and timestamped install/update events. The field is_new_install indicates whether the app installation is first-time or an existing reinstall/update, helping distinguish between new user acquisition and returning user activity — a critical signal for campaign performance and user lifecycle analytics.

    Alongside app-level insights, the dataset provides detailed device intelligence — including manufacturer, model, OS type/version, language, and user agent — combined with IP-based location data (country, region, city) and daily server timestamps for freshness tracking.

    All data is hashed, privacy-compliant, and refreshed daily, making it ideal for organizations seeking high-quality, real-world app install signals across Android and iOS ecosystems.

    📊 Key Features • First-party, consented data from OS-level applications • Hashed identifiers (device_id, advertising_id) for privacy-safe integration • Install and update timestamps for temporal and behavioral analysis • is_new_install flag to separate new installs from reinstalls or app updates • Comprehensive app, device, and location attributes • Daily refreshed dataset ensuring data accuracy and timeliness

    ⚙️ Primary Use Cases • Mobile Attribution & User Acquisition Tracking – Identify new users vs. re-engaged ones via the is_new_install flag • Market Intelligence & Competitive Benchmarking – Analyze install trends across app categories and geographies • Audience Segmentation – Classify users by device type, OS version, and app install behavior • Ad Targeting Optimization – Refine lookalike and re-engagement audiences with verified install data • Product & Growth Analytics – Study retention, uninstall rates, and user churn patterns • App Store Strategy – Evaluate app update frequency and version distribution

    📍 Industries Benefiting • Ad-Tech & Mar-Tech Platforms • Mobile App Publishers & Developers • Telecom Operators & Device OEMs • Market Research & Analytics Firms • E-commerce, Fintech & Gaming Companies • Media, Entertainment & OTT Platforms

    With millions of verified app installs tracked across Android and iOS, this AI-powered, consent-based dataset delivers actionable insights into app discovery, engagement, and retention, driving smarter decisions in mobile marketing, audience intelligence, and growth analytics.

  15. m

    Omnichannel Consumer Behaviors | 1st Party | 3B+ events verified, US...

    • omnitrafficdata.mfour.com
    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MFour, Omnichannel Consumer Behaviors | 1st Party | 3B+ events verified, US consumers | Path to purchase across app, web and point of interest locations [Dataset]. https://omnitrafficdata.mfour.com/products/omnichannel-consumer-journeys-1st-party-3b-events-verifi-mfour
    Explore at:
    Dataset authored and provided by
    MFour
    Area covered
    United States
    Description

    This dataset encompasses mobile app usage, web clickstream and location visitation behavior, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). The only omnichannel meter at scale representing iOS and Android platforms.

  16. h

    ui-navigation-corpus

    • huggingface.co
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fg (2025). ui-navigation-corpus [Dataset]. https://huggingface.co/datasets/teleren/ui-navigation-corpus
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 2, 2025
    Authors
    fg
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    User Interface (Navigation) Corpus

      Overview
    

    This dataset serves as a collection of various images of, videos and metadata of mobile (both iOS and Android) and web user interfaces as well as tags and text extractions associated to them. Dataset also includes user interface navigation annotations and videos related to them. One of the possible use cases of this dataset is training a UI navigation agent.

      Dataset Structure
    

    The resources of this dataset are packed… See the full description on the dataset page: https://huggingface.co/datasets/teleren/ui-navigation-corpus.

  17. Mobile Device Usage and User Behavior Dataset

    • kaggle.com
    zip
    Updated Sep 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vala khorasani (2024). Mobile Device Usage and User Behavior Dataset [Dataset]. https://www.kaggle.com/datasets/valakhorasani/mobile-device-usage-and-user-behavior-dataset/discussion
    Explore at:
    zip(11576 bytes)Available download formats
    Dataset updated
    Sep 28, 2024
    Authors
    vala khorasani
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides a comprehensive analysis of mobile device usage patterns and user behavior classification. It contains 700 samples of user data, including metrics such as app usage time, screen-on time, battery drain, and data consumption. Each entry is categorized into one of five user behavior classes, ranging from light to extreme usage, allowing for insightful analysis and modeling.

    Key Features: - User ID: Unique identifier for each user. - Device Model: Model of the user's smartphone. - Operating System: The OS of the device (iOS or Android). - App Usage Time: Daily time spent on mobile applications, measured in minutes. - Screen On Time: Average hours per day the screen is active. - Battery Drain: Daily battery consumption in mAh. - Number of Apps Installed: Total apps available on the device. - Data Usage: Daily mobile data consumption in megabytes. - Age: Age of the user. - Gender: Gender of the user (Male or Female). - User Behavior Class: Classification of user behavior based on usage patterns (1 to 5).

    This dataset is ideal for researchers, data scientists, and analysts interested in understanding mobile user behavior and developing predictive models in the realm of mobile technology and applications. This Dataset was primarily designed to implement machine learning algorithms and is not a reliable source for a paper or article.

  18. g

    DoubleR - Smart Parking Lots | gimi9.com

    • gimi9.com
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). DoubleR - Smart Parking Lots | gimi9.com [Dataset]. https://gimi9.com/dataset/au_ff2q-wdgv/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Description

    SmartParking is a trial designed to help ease traffic congestion and lower travel times by using real-time bay sensor data and the ParkCBR app to show drivers where they are more likely to find available car parking in the Manuka shopping precinct. Android users can download the ParkCBR from GooglePlay Store and iOS users from the AppStore. The Lots dataset shows the locations and describes each lot.

  19. w

    Global Medication Tracker Apps Market Research Report: By Application...

    • wiseguyreports.com
    Updated Aug 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Medication Tracker Apps Market Research Report: By Application (Chronic Disease Management, Medication Compliance, Healthcare Provider Collaboration, Personal Health Management), By Platform (iOS, Android, Web), By End User (Patients, Healthcare Professionals, Caregivers), By Features (Reminder Alerts, Medication Database, Drug Interaction Checker, Health Monitoring) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/medication-tracker-apps-market
    Explore at:
    Dataset updated
    Aug 23, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Aug 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20241.54(USD Billion)
    MARKET SIZE 20251.76(USD Billion)
    MARKET SIZE 20356.5(USD Billion)
    SEGMENTS COVEREDApplication, Platform, End User, Features, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSIncreasing chronic disease prevalence, Growing smartphone adoption, Rise in healthcare digitization, Enhanced patient engagement, Expanding telehealth services
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDCareZone, MediSafe Inc, Round Health, RxSaver, Medocino, Pillcheck, SimpleDose, MyTherapy, Pill Reminder, HealthNet, DoseCast, MyMedSchedule, Medicine Tracker, Take Your Meds, Medisafe, Pillboxie
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESGrowing aging population demand, Increased chronic disease prevalence, Integration with wearable devices, Expansion into telehealth services, Rising healthcare consumerism trends
    COMPOUND ANNUAL GROWTH RATE (CAGR) 14.0% (2025 - 2035)
  20. Mobile App Store ( 7200 apps)

    • kaggle.com
    zip
    Updated Jun 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramanathan Perumal (2018). Mobile App Store ( 7200 apps) [Dataset]. https://www.kaggle.com/ramamet4/app-store-apple-data-set-10k-apps
    Explore at:
    zip(5905027 bytes)Available download formats
    Dataset updated
    Jun 10, 2018
    Authors
    Ramanathan Perumal
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Description

    Mobile App Statistics (Apple iOS app store)

    The ever-changing mobile landscape is a challenging space to navigate. . The percentage of mobile over desktop is only increasing. Android holds about 53.2% of the smartphone market, while iOS is 43%. To get more people to download your app, you need to make sure they can easily find your app. Mobile app analytics is a great way to understand the existing strategy to drive growth and retention of future user.

    With million of apps around nowadays, the following data set has become very key to getting top trending apps in iOS app store. This data set contains more than 7000 Apple iOS mobile application details. The data was extracted from the iTunes Search API at the Apple Inc website. R and linux web scraping tools were used for this study.

    Interactive full Shiny app can be seen here( https://multiscal.shinyapps.io/appStore/)

    Data collection date (from API); July 2017

    Dimension of the data set; 7197 rows and 16 columns

    Content:

    appleStore.csv

    1. "id" : App ID

    2. "track_name": App Name

    3. "size_bytes": Size (in Bytes)

    4. "currency": Currency Type

    5. "price": Price amount

    6. "rating_count_tot": User Rating counts (for all version)

    7. "rating_count_ver": User Rating counts (for current version)

    8. "user_rating" : Average User Rating value (for all version)

    9. "user_rating_ver": Average User Rating value (for current version)

    10. "ver" : Latest version code

    11. "cont_rating": Content Rating

    12. "prime_genre": Primary Genre

    13. "sup_devices.num": Number of supporting devices

    14. "ipadSc_urls.num": Number of screenshots showed for display

    15. "lang.num": Number of supported languages

    16. "vpp_lic": Vpp Device Based Licensing Enabled

    appleStore_description.csv

    1. id : App ID
    2. track_name: Application name
    3. size_bytes: Memory size (in Bytes)
    4. app_desc: Application description

    Acknowledgements

    The data was extracted from the iTunes Search API at the Apple Inc website. R and linux web scraping tools were used for this study.

    Inspiration

    1. How does the App details contribute the user ratings?
    2. Try to compare app statistics for different groups?

    Reference: R package From github, with devtools::install_github("ramamet/applestoreR")

    Licence

    Copyright (c) 2018 Ramanathan Perumal

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Khushi Yadav (2025). Screen Time and App Usage Dataset (iOS/Android) [Dataset]. https://www.kaggle.com/datasets/khushikyad001/screen-time-and-app-usage-dataset-iosandroid
Organization logo

Screen Time and App Usage Dataset (iOS/Android)

Track app usage trends with focus on productivity vs. entertainment

Explore at:
zip(157038 bytes)Available download formats
Dataset updated
Apr 19, 2025
Authors
Khushi Yadav
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

This dataset simulates anonymized mobile screen time and app usage data collected from Android/iOS users over a 3-month period (Jan–April 2024). It captures daily usage trends across various app categories including:

Productivity: Google Docs, Notion, Slack

Entertainment: YouTube, Netflix, TikTok

Social Media: Instagram, WhatsApp, Facebook

Utilities: Chrome, Gmail, Maps

For YouTube, additional engagement statistics such as views, likes, and comments are included to analyze video popularity and content consumption behavior.

The dataset enables exploration of:

Productivity vs. entertainment screen time patterns

Daily usage fluctuations

App-specific user engagement

Correlation between time spent and user interactions

YouTube content virality metrics

This is a great resource for:

EDA projects

Behavioral clustering

Dashboard development

Time series and anomaly detection

Building recommendation or focus-assistive apps

Search
Clear search
Close search
Google apps
Main menu