42 datasets found
  1. Market share of mobile operating systems worldwide 2009-2025, by quarter

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Market share of mobile operating systems worldwide 2009-2025, by quarter [Dataset]. https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Android maintained its position as the leading mobile operating system worldwide in the first quarter of 2025 with a market share of about ***** percent. Android's closest rival, Apple's iOS, had a market share of approximately ***** percent during the same period. The leading mobile operating systems Both unveiled in 2007, Google’s Android and Apple’s iOS have evolved through incremental updates introducing new features and capabilities. The latest version of iOS, iOS 18, was released in September 2024, while the most recent Android iteration, Android 15, was made available in September 2023. A key difference between the two systems concerns hardware - iOS is only available on Apple devices, whereas Android ships with devices from a range of manufacturers such as Samsung, Google and OnePlus. In addition, Apple has had far greater success in bringing its users up to date. As of February 2024, ** percent of iOS users had iOS 17 installed, while in the same month only ** percent of Android users ran the latest version. The rise of the smartphone From around 2010, the touchscreen smartphone revolution had a major impact on sales of basic feature phones, as the sales of smartphones increased from *** million units in 2008 to **** billion units in 2023. In 2020, smartphone sales decreased to **** billion units due to the coronavirus (COVID-19) pandemic. Apple, Samsung, and lately also Xiaomi, were the big winners in this shift towards smartphones, with BlackBerry and Nokia among those unable to capitalize.

  2. Number of smartphone users in the United States 2014-2029

    • statista.com
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of smartphone users in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/2711/us-smartphone-market/
    Explore at:
    Dataset updated
    May 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.

  3. Z

    Cloud Mobile Backend as a Service (BaaS) Market By Application (Cloud...

    • zionmarketresearch.com
    pdf
    Updated Sep 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Cloud Mobile Backend as a Service (BaaS) Market By Application (Cloud Storage and Backup, Database Management, User Authentication, Push Notification, and Database Management), By Platform (Android and iOS), By Enterprise Size (Small and Medium-sized Enterprises and Large Enterprises), By Vertical (BFSI, Manufacturing, Gaming, IT & ITES, Healthcare, Pharmaceuticals, Media, Entertainment, and Telecommunications), And By Region - Global And Regional Industry Overview, Market Intelligence, Comprehensive Analysis, Historical Data, And Forecasts 2024 - 2032 [Dataset]. https://www.zionmarketresearch.com/report/cloud-mobile-backend-as-a-service-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Sep 18, 2025
    Dataset authored and provided by
    Zion Market Research
    License

    https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy

    Time period covered
    2022 - 2030
    Area covered
    Global
    Description

    Global Cloud Mobile Backend as a Service (BaaS) Market size was $3.0 Billion in 2022 and is slated to hit $7.3 Billion by the end of 2030 with a CAGR of nearly 24.1%.

  4. F

    German Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). German Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/german-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the German Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the German language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this German OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible German text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native German people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of German text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native German crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the German language. Your journey to improved language understanding and processing begins here.

  5. MSCardio Seismocardiography (SCG) Dataset

    • zenodo.org
    zip
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amirtahà Taebi; Mohammad Muntasir Rahman; Amirtahà Taebi; Mohammad Muntasir Rahman (2025). MSCardio Seismocardiography (SCG) Dataset [Dataset]. http://doi.org/10.5281/zenodo.14975878
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 5, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Amirtahà Taebi; Mohammad Muntasir Rahman; Amirtahà Taebi; Mohammad Muntasir Rahman
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Overview

    The MSCardio Seismocardiography Dataset is an open-access dataset collected as part of the Mississippi State Remote Cardiovascular Monitoring (MSCardio) study. This dataset includes seismocardiogram (SCG) signals recorded from participants using smartphone sensors, enabling scalable, real-world cardiovascular monitoring without requiring specialized equipment. The dataset aims to support research in SCG signal processing, machine learning applications in health monitoring, and cardiovascular assessment.

    See the GitHub repository of this dataset for the latest updates: https://github.com/TaebiLab/MSCardio

    Background

    Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. SCG is a non-invasive technique that captures chest vibrations induced by cardiac activity and respiration, providing valuable insights into cardiac function. However, the scarcity of open-access SCG datasets has been a significant limitation for research in this field. The MSCardio dataset addresses this gap by providing real-world SCG signals collected via smartphone sensors from a diverse population.

    Data Description

    Study Population

    • Total participants enrolled: 123
    • Participants who uploaded data: 108 (46 males, 61 females, 1 unspecified)
    • Age range: 18 to 62 years
    • Total recordings uploaded: 515
    • Unique recordings after duplicate removal: 502
    • Platforms used: iOS and Android smartphones

    Signal Data

    • Axial vibrations in three directions (SCG) recorded using smartphone sensors
    • Sampling frequency varies depending on the device capabilities
    • Data synchronization is ensured for temporal accuracy
    • Missing SCG data identified in certain recordings, addressed through preprocessing

    Metadata

    Each recording includes:

    • Device model (e.g., iPhone Pro Max)
    • Recording time (UTC) and time zone
    • Platform (iOS or Android)
    • General demographic details (gender, race, age, height, weight)

    File Structure

    The dataset is organized as follows:


    MSCardio_SCG_Dataset/
    │── info/
    │ └── all_subject_data.csv # Consolidated metadata for all subjects
    │── MSCardio/
    │ ├── Subject_XXXX/ # Subject-specific folder
    │ │ ├── general_metadata.json # Demographic and device information
    │ │ ├── Recording_XXX/ # Individual recordings
    │ │ │ ├── scg.csv # SCG signal data
    │ │ │ ├── recording_metadata.json # Timestamp and device details

    Data Collection Protocol

    • Participants placed their smartphone on their chest while lying in a supine position.
    • The app recorded SCG signals for approximately two minutes.
    • Self-reported demographic data were collected.
    • Data were uploaded to the study's cloud storage.

    Usage and Applications

    This dataset is intended for research in:

    • SCG signal processing and feature extraction
    • Machine learning applications in cardiovascular monitoring
    • Investigating inter- and intra-subject variability in SCG signals
    • Remote cardiovascular health assessment
    • The Data_visualization.py script is provided for data visualization

    Citation

    If you use this dataset in your research, please cite:


    @article{rahman2025MSCardio,
    author = {Taebi, Amirtah{\`a} and Rahman, Mohammad Muntasir},
    title = {MSCardio: Initial insights from remote monitoring of cardiovascular-induced chest vibrations via smartphones},
    journal = {Data in Brief},
    year = {2025},
    publisher = {Elsevier}
    }

    Contact

    For any questions regarding the dataset, please contact:

    • Amirtahà Taebi and Mohammad Muntasir Rahman
    • E-mail: ataebi@abe.msstate.edu, mmr510@msstate.edu
    • Biomedical Engineering Program, Mississippi State University

    ---

    This dataset is provided under an open-access license. Please ensure ethical and responsible use when utilizing this dataset for research.

  6. F

    Turkish Handwritten Sticky Notes OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Turkish Handwritten Sticky Notes OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/turkish-sticky-notes-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Turkish Sticky Notes Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Turkish language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Turkish OCR dataset offers a wide distribution of different types of sticky note images. Within this dataset, you'll discover a variety of handwritten text, including quotes, sentences, and individual words on sticky notes. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Turkish text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these sticky notes were written and images were captured by native Turkish people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Turkish text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Turkish crowd community.

    If you require a customized OCR dataset containing sticky note images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this sticky notes image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Turkish language. Your journey to improved language understanding and processing begins here.

  7. Internet Speed Dataset

    • kaggle.com
    Updated Feb 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dhruvil Dave (2022). Internet Speed Dataset [Dataset]. https://www.kaggle.com/datasets/dhruvildave/ookla-internet-speed-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 4, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dhruvil Dave
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Introduction

    This dataset provides global fixed broadband and mobile (cellular) network performance metrics in zoom level 16 web mercator tiles (approximately 610.8 meters by 610.8 meters at the equator). Data is provided in both Shapefile format as well as Apache Parquet with geometries represented in Well Known Text (WKT) projected in EPSG:4326. Download speed, upload speed, and latency are collected via the Speedtest by Ookla applications for Android and iOS and averaged for each tile. Measurements are filtered to results containing GPS-quality location accuracy.

    Content

    Field NameTypeDescription
    avg_d_kbpsIntegerThe average download speed of all tests performed in the tile, represented in kilobits per second.
    avg_u_kbpsIntegerThe average upload speed of all tests performed in the tile, represented in kilobits per second.
    avg_lat_msIntegerThe average latency of all tests performed in the tile, represented in milliseconds.
    testsIntegerThe number of tests taken in the tile.
    devicesIntegerThe number of unique devices contributing tests in the tile.
    quadkeyTextThe quadkey representing the tile.
    tileTextWell Known Text (WKT) representation of the tile geometry.

    Quadkeys can act as a unique identifier for the tile. This can be useful for joining data spatially from multiple periods (quarters), creating coarser spatial aggregations without using geospatial functions, spatial indexing, partitioning, and an alternative for storing and deriving the tile geometry.

    Two layers are distributed as separate sets of files:

    • mobile - Tiles containing tests taken from mobile devices with GPS-quality location and a cellular connection type (e.g. 4G LTE, 5G NR).
    • fixed - Tiles containing tests taken from mobile devices with GPS-quality location and a non-cellular connection type (e.g. WiFi, Ethernet).

    Quarter 1 refers to data from January to March. Quarter 2 refers to data from April to June. Quarter 3 refers to data from July to September. Quarter 4 refers to data from October to December. All the data is from the year 2020.

    Citation

    Speedtest® by Ookla® Global Fixed and Mobile Network Performance Maps. Based on analysis by Ookla of Speedtest Intelligence® data for 2020. Provided by Ookla and accessed February 15, 2021. Ookla trademarks used under license and reprinted with permission.

    Image Credits: Unsplash - umby

  8. F

    Arabic Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Arabic Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/arabic-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Arabic Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Arabic language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Arabic OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Arabic text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native Arabic people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Arabic text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Arabic crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Arabic language. Your journey to improved language understanding and processing begins here.

  9. Global social media subscriptions comparison 2023

    • statista.com
    • es.statista.com
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Global social media subscriptions comparison 2023 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Social media companies are starting to offer users the option to subscribe to their platforms in exchange for monthly fees. Until recently, social media has been predominantly free to use, with tech companies relying on advertising as their main revenue generator. However, advertising revenues have been dropping following the COVID-induced boom. As of July 2023, Meta Verified is the most costly of the subscription services, setting users back almost 15 U.S. dollars per month on iOS or Android. Twitter Blue costs between eight and 11 U.S. dollars per month and ensures users will receive the blue check mark, and have the ability to edit tweets and have NFT profile pictures. Snapchat+, drawing in four million users as of the second quarter of 2023, boasts a Story re-watch function, custom app icons, and a Snapchat+ badge.

  10. F

    Portuguese Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Portuguese Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/portuguese-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Portuguese Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Portuguese language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Portuguese OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Portuguese text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native Portuguese people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Portuguese text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Portuguese crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Portuguese language. Your journey to improved language understanding and processing begins here.

  11. F

    Bulgarian Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bulgarian Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/bulgarian-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Bulgarian Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Bulgarian language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Bulgarian OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Bulgarian text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native Bulgarian people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Bulgarian text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Bulgarian crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Bulgarian language. Your journey to improved language understanding and processing begins here.

  12. F

    Swedish Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Swedish Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/swedish-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Swedish Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Swedish language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Swedish OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Swedish text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native Swedish people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Swedish text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Swedish crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Swedish language. Your journey to improved language understanding and processing begins here.

  13. F

    Italian Handwritten Sticky Notes OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Italian Handwritten Sticky Notes OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/italian-sticky-notes-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Italian Sticky Notes Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Italian language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Italian OCR dataset offers a wide distribution of different types of sticky note images. Within this dataset, you'll discover a variety of handwritten text, including quotes, sentences, and individual words on sticky notes. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Italian text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these sticky notes were written and images were captured by native Italian people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Italian text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Italian crowd community.

    If you require a customized OCR dataset containing sticky note images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this sticky notes image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Italian language. Your journey to improved language understanding and processing begins here.

  14. w

    Global Calorie Counter Apps Market Research Report: By Application (Weight...

    • wiseguyreports.com
    Updated Aug 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Calorie Counter Apps Market Research Report: By Application (Weight Loss, Fitness Tracking, Nutritional Monitoring, Diet Management), By Platform (iOS, Android, Web-Based), By Users (Individuals, Fitness Trainers, Dietitians, Health Coaches), By Functionality (Calorie Tracking, Exercise Tracking, Meal Planning, Food Database) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/cn/reports/calorie-counter-apps-market
    Explore at:
    Dataset updated
    Aug 19, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Aug 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.18(USD Billion)
    MARKET SIZE 20252.35(USD Billion)
    MARKET SIZE 20355.0(USD Billion)
    SEGMENTS COVEREDApplication, Platform, Users, Functionality, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSincreasing health consciousness, rising smartphone usage, growing fitness trends, demand for personalized nutrition, integration of wearable technology
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDFatSecret, Nutracheck, Eat This Much, Cronometer, Fitbit, MyFitnessPal, SparkPeople, Lifesum, Yummly, Apple Health, Diet Organizer, Google Fit, Noom, Calorie Counter by Green Guava, Samsung Health, Lose It
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIntegration with wearable devices, Personalized nutrition plans, Gamification features, AI-driven insights, Multilingual support features
    COMPOUND ANNUAL GROWTH RATE (CAGR) 7.8% (2025 - 2035)
  15. F

    Finnish Handwritten Sticky Notes OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Finnish Handwritten Sticky Notes OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/finnish-sticky-notes-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Finnish Sticky Notes Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Finnish language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Finnish OCR dataset offers a wide distribution of different types of sticky note images. Within this dataset, you'll discover a variety of handwritten text, including quotes, sentences, and individual words on sticky notes. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Finnish text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these sticky notes were written and images were captured by native Finnish people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Finnish text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Finnish crowd community.

    If you require a customized OCR dataset containing sticky note images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this sticky notes image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Finnish language. Your journey to improved language understanding and processing begins here.

  16. F

    Korean Handwritten Sticky Notes OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Korean Handwritten Sticky Notes OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/korean-sticky-notes-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Korean Sticky Notes Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Korean language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Korean OCR dataset offers a wide distribution of different types of sticky note images. Within this dataset, you'll discover a variety of handwritten text, including quotes, sentences, and individual words on sticky notes. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Korean text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these sticky notes were written and images were captured by native Korean people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Korean text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Korean crowd community.

    If you require a customized OCR dataset containing sticky note images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this sticky notes image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Korean language. Your journey to improved language understanding and processing begins here.

  17. F

    Spanish Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Spanish Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/spanish-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Spanish Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Spanish language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Spanish OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Spanish text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native Spanish people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Spanish text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Spanish crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Spanish language. Your journey to improved language understanding and processing begins here.

  18. F

    Polish Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Polish Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/polish-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Polish Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Polish language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Polish OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Polish text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native Polish people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Polish text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Polish crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Polish language. Your journey to improved language understanding and processing begins here.

  19. F

    French Shopping List OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). French Shopping List OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/french-shopping-list-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    French
    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the French Shopping List Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the French language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this French OCR dataset offers a wide distribution of different types of shopping list images. Within this dataset, you'll discover a variety of handwritten text, including sentences, and individual item name words, quantity, comments, etc on shopping lists. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible French text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these shopping lists were written and images were captured by native French people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of French text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native French crowd community.

    If you require a customized OCR dataset containing shopping list images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this shopping list image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the French language. Your journey to improved language understanding and processing begins here.

  20. F

    Danish Handwritten Sticky Notes OCR Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Danish Handwritten Sticky Notes OCR Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/ocr-dataset/danish-sticky-notes-ocr-image-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    Introducing the Danish Sticky Notes Image Dataset - a diverse and comprehensive collection of handwritten text images carefully curated to propel the advancement of text recognition and optical character recognition (OCR) models designed specifically for the Danish language.

    Dataset Contain & Diversity:

    Containing more than 2000 images, this Danish OCR dataset offers a wide distribution of different types of sticky note images. Within this dataset, you'll discover a variety of handwritten text, including quotes, sentences, and individual words on sticky notes. The images in this dataset showcase distinct handwriting styles, fonts, font sizes, and writing variations.

    To ensure diversity and robustness in training your OCR model, we allow limited (less than three) unique images in a single handwriting. This ensures we have diverse types of handwriting to train your OCR model on. Stringent measures have been taken to exclude any personally identifiable information (PII) and to ensure that in each image a minimum of 80% of space contains visible Danish text.

    The images have been captured under varying lighting conditions, including day and night, as well as different capture angles and backgrounds. This diversity helps build a balanced OCR dataset, featuring images in both portrait and landscape modes.

    All these sticky notes were written and images were captured by native Danish people to ensure text quality, prevent toxic content, and exclude PII text. We utilized the latest iOS and Android mobile devices with cameras above 5MP to maintain image quality. Images in this training dataset are available in both JPEG and HEIC formats.

    Metadata:

    In addition to the image data, you will receive structured metadata in CSV format. For each image, this metadata includes information on image orientation, country, language, and device details. Each image is correctly named to correspond with the metadata.

    This metadata serves as a valuable resource for understanding and characterizing the data, aiding informed decision-making in the development of Danish text recognition models.

    Update & Custom Collection:

    We are committed to continually expanding this dataset by adding more images with the help of our native Danish crowd community.

    If you require a customized OCR dataset containing sticky note images tailored to your specific guidelines or device distribution, please don't hesitate to contact us. We have the capability to curate specialized data to meet your unique requirements.

    Additionally, we can annotate or label the images with bounding boxes or transcribe the text in the images to align with your project's specific needs using our crowd community.

    License:

    This image dataset, created by FutureBeeAI, is now available for commercial use.

    Conclusion:

    Leverage this sticky notes image OCR dataset to enhance the training and performance of text recognition, text detection, and optical character recognition models for the Danish language. Your journey to improved language understanding and processing begins here.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Market share of mobile operating systems worldwide 2009-2025, by quarter [Dataset]. https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
Organization logo

Market share of mobile operating systems worldwide 2009-2025, by quarter

Explore at:
398 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Android maintained its position as the leading mobile operating system worldwide in the first quarter of 2025 with a market share of about ***** percent. Android's closest rival, Apple's iOS, had a market share of approximately ***** percent during the same period. The leading mobile operating systems Both unveiled in 2007, Google’s Android and Apple’s iOS have evolved through incremental updates introducing new features and capabilities. The latest version of iOS, iOS 18, was released in September 2024, while the most recent Android iteration, Android 15, was made available in September 2023. A key difference between the two systems concerns hardware - iOS is only available on Apple devices, whereas Android ships with devices from a range of manufacturers such as Samsung, Google and OnePlus. In addition, Apple has had far greater success in bringing its users up to date. As of February 2024, ** percent of iOS users had iOS 17 installed, while in the same month only ** percent of Android users ran the latest version. The rise of the smartphone From around 2010, the touchscreen smartphone revolution had a major impact on sales of basic feature phones, as the sales of smartphones increased from *** million units in 2008 to **** billion units in 2023. In 2020, smartphone sales decreased to **** billion units due to the coronavirus (COVID-19) pandemic. Apple, Samsung, and lately also Xiaomi, were the big winners in this shift towards smartphones, with BlackBerry and Nokia among those unable to capitalize.

Search
Clear search
Close search
Google apps
Main menu