100+ datasets found
  1. R

    Data Annotate Dataset

    • universe.roboflow.com
    zip
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NecleusAIPublic (2025). Data Annotate Dataset [Dataset]. https://universe.roboflow.com/necleusaipublic/data-annotate-ojqb1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    NecleusAIPublic
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    2 Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Historical Weapon Classification: This computer vision model can be utilized by historians, archeologists, and museum curators to classify and catalog historical weapons and artifacts, including swords, arrows, guns, and knives, enabling them to better understand and contextualize the weapons' origins and usage throughout history.

    2. Video Game Asset Management: Game developers can use the Data Annotate model to automatically tag and categorize in-game assets, such as weapons and visual effects, to streamline their development process and more easily manage game content.

    3. Prop and Costume Design: The model can aid prop and costume designers in the film, theater, and cosplay industries by identifying and categorizing various weapons and related items, allowing them to find suitable props or inspirations for their designs more quickly.

    4. Law Enforcement and Security: Data Annotate can be used by law enforcement agencies and security personnel to effectively detect weapons in surveillance footage or images, enabling them to respond more quickly to potential threats and uphold public safety.

    5. Educational Applications: Teachers and educators can use the model to develop interactive and engaging learning materials in the fields of history, art, and technology. It can help students identify and understand the significance of various weapons and their roles in shaping human history and culture.

  2. h

    fgan-annotate-dataset

    • huggingface.co
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Emmanuel Enejo (2024). fgan-annotate-dataset [Dataset]. https://huggingface.co/datasets/aaronemmanuel/fgan-annotate-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 7, 2024
    Authors
    Aaron Emmanuel Enejo
    Description

    Dataset Card for fgan-annotate-dataset

    This dataset has been created with Argilla. As shown in the sections below, this dataset can be loaded into Argilla as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

      Dataset Summary
    

    This dataset contains:

    A dataset configuration file conforming to the Argilla dataset format named argilla.yaml. This configuration file will be used to configure the dataset when using the… See the full description on the dataset page: https://huggingface.co/datasets/aaronemmanuel/fgan-annotate-dataset.

  3. R

    Data Annotate Dataset

    • universe.roboflow.com
    zip
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akshitsworkplace (2025). Data Annotate Dataset [Dataset]. https://universe.roboflow.com/akshitsworkplace/data-annotate-rqkbx
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Akshitsworkplace
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Grocery Bounding Boxes
    Description

    Data Annotate

    ## Overview
    
    Data Annotate is a dataset for object detection tasks - it contains Grocery annotations for 1,261 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  4. D

    Data Annotation and Labeling Tool Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Annotation and Labeling Tool Report [Dataset]. https://www.marketreportanalytics.com/reports/data-annotation-and-labeling-tool-54046
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Data Annotation & Labeling Tool market! Explore a comprehensive analysis revealing a $2B market in 2025, projected to reach $10B by 2033, driven by AI and ML adoption. Learn about key trends, regional insights, and leading companies shaping this rapidly evolving landscape.

  5. d

    Data from: X-ray CT data with semantic annotations for the paper "A workflow...

    • catalog.data.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). X-ray CT data with semantic annotations for the paper "A workflow for segmenting soil and plant X-ray CT images with deep learning in Google’s Colaboratory" [Dataset]. https://catalog.data.gov/dataset/x-ray-ct-data-with-semantic-annotations-for-the-paper-a-workflow-for-segmenting-soil-and-p-d195a
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    Leaves from genetically unique Juglans regia plants were scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA). Soil samples were collected in Fall of 2017 from the riparian oak forest located at the Russell Ranch Sustainable Agricultural Institute at the University of California Davis. The soil was sieved through a 2 mm mesh and was air dried before imaging. A single soil aggregate was scanned at 23 keV using the 10x objective lens with a pixel resolution of 650 nanometers on beamline 8.3.2 at the ALS. Additionally, a drought stressed almond flower bud (Prunus dulcis) from a plant housed at the University of California, Davis, was scanned using a 4x lens with a pixel resolution of 1.72 µm on beamline 8.3.2 at the ALS Raw tomographic image data was reconstructed using TomoPy. Reconstructions were converted to 8-bit tif or png format using ImageJ or the PIL package in Python before further processing. Images were annotated using Intel’s Computer Vision Annotation Tool (CVAT) and ImageJ. Both CVAT and ImageJ are free to use and open source. Leaf images were annotated in following Théroux-Rancourt et al. (2020). Specifically, Hand labeling was done directly in ImageJ by drawing around each tissue; with 5 images annotated per leaf. Care was taken to cover a range of anatomical variation to help improve the generalizability of the models to other leaves. All slices were labeled by Dr. Mina Momayyezi and Fiona Duong.To annotate the flower bud and soil aggregate, images were imported into CVAT. The exterior border of the bud (i.e. bud scales) and flower were annotated in CVAT and exported as masks. Similarly, the exterior of the soil aggregate and particulate organic matter identified by eye were annotated in CVAT and exported as masks. To annotate air spaces in both the bud and soil aggregate, images were imported into ImageJ. A gaussian blur was applied to the image to decrease noise and then the air space was segmented using thresholding. After applying the threshold, the selected air space region was converted to a binary image with white representing the air space and black representing everything else. This binary image was overlaid upon the original image and the air space within the flower bud and aggregate was selected using the “free hand” tool. Air space outside of the region of interest for both image sets was eliminated. The quality of the air space annotation was then visually inspected for accuracy against the underlying original image; incomplete annotations were corrected using the brush or pencil tool to paint missing air space white and incorrectly identified air space black. Once the annotation was satisfactorily corrected, the binary image of the air space was saved. Finally, the annotations of the bud and flower or aggregate and organic matter were opened in ImageJ and the associated air space mask was overlaid on top of them forming a three-layer mask suitable for training the fully convolutional network. All labeling of the soil aggregate and soil aggregate images was done by Dr. Devin Rippner. These images and annotations are for training deep learning models to identify different constituents in leaves, almond buds, and soil aggregates Limitations: For the walnut leaves, some tissues (stomata, etc.) are not labeled and only represent a small portion of a full leaf. Similarly, both the almond bud and the aggregate represent just one single sample of each. The bud tissues are only divided up into buds scales, flower, and air space. Many other tissues remain unlabeled. For the soil aggregate annotated labels are done by eye with no actual chemical information. Therefore particulate organic matter identification may be incorrect. Resources in this dataset:Resource Title: Annotated X-ray CT images and masks of a Forest Soil Aggregate. File Name: forest_soil_images_masks_for_testing_training.zipResource Description: This aggregate was collected from the riparian oak forest at the Russell Ranch Sustainable Agricultural Facility. The aggreagate was scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 10x objective lens with a pixel resolution of 650 nanometers. For masks, the background has a value of 0,0,0; pores spaces have a value of 250,250, 250; mineral solids have a value= 128,0,0; and particulate organic matter has a value of = 000,128,000. These files were used for training a model to segment the forest soil aggregate and for testing the accuracy, precision, recall, and f1 score of the model.Resource Title: Annotated X-ray CT images and masks of an Almond bud (P. Dulcis). File Name: Almond_bud_tube_D_P6_training_testing_images_and_masks.zipResource Description: Drought stressed almond flower bud (Prunis dulcis) from a plant housed at the University of California, Davis, was scanned by X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 4x lens with a pixel resolution of 1.72 µm using. For masks, the background has a value of 0,0,0; air spaces have a value of 255,255, 255; bud scales have a value= 128,0,0; and flower tissues have a value of = 000,128,000. These files were used for training a model to segment the almond bud and for testing the accuracy, precision, recall, and f1 score of the model.Resource Software Recommended: Fiji (ImageJ),url: https://imagej.net/software/fiji/downloads Resource Title: Annotated X-ray CT images and masks of Walnut leaves (J. Regia) . File Name: 6_leaf_training_testing_images_and_masks_for_paper.zipResource Description: Stems were collected from genetically unique J. regia accessions at the 117 USDA-ARS-NCGR in Wolfskill Experimental Orchard, Winters, California USA to use as scion, and were grafted by Sierra Gold Nursery onto a commonly used commercial rootstock, RX1 (J. microcarpa × J. regia). We used a common rootstock to eliminate any own-root effects and to simulate conditions for a commercial walnut orchard setting, where rootstocks are commonly used. The grafted saplings were repotted and transferred to the Armstrong lathe house facility at the University of California, Davis in June 2019, and kept under natural light and temperature. Leaves from each accession and treatment were scanned using X-ray micro-computed tomography (microCT) on the X-ray μCT beamline (8.3.2) at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA USA) using the 10x objective lens with a pixel resolution of 650 nanometers. For masks, the background has a value of 170,170,170; Epidermis value= 85,85,85; Mesophyll value= 0,0,0; Bundle Sheath Extension value= 152,152,152; Vein value= 220,220,220; Air value = 255,255,255.Resource Software Recommended: Fiji (ImageJ),url: https://imagej.net/software/fiji/downloads

  6. Image Annotation Services | Image Labeling for AI & ML |Computer Vision...

    • datarade.ai
    Updated Dec 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2023). Image Annotation Services | Image Labeling for AI & ML |Computer Vision Data| Annotated Imagery Data [Dataset]. https://datarade.ai/data-products/nexdata-image-annotation-services-ai-assisted-labeling-nexdata
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Dec 29, 2023
    Dataset authored and provided by
    Nexdata
    Area covered
    Romania, Bulgaria, Latvia, Japan, Austria, India, Grenada, El Salvador, Bosnia and Herzegovina, Hong Kong
    Description
    1. Overview We provide various types of Annotated Imagery Data annotation services, including:
    2. Bounding box
    3. Polygon
    4. Segmentation
    5. Polyline
    6. Key points
    7. Image classification
    8. Image description ...
    9. Our Capacity
    10. Platform: Our platform supports human-machine interaction and semi-automatic labeling, increasing labeling efficiency by more than 30% per annotator.It has successfully been applied to nearly 5,000 projects.
    • Annotation Tools: Nexdata's platform integrates 30 sets of annotation templates, covering audio, image, video, point cloud and text.

    -Secure Implementation: NDA is signed to gurantee secure implementation and Annotated Imagery Data is destroyed upon delivery.

    -Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001

    1. About Nexdata Nexdata has global data processing centers and more than 20,000 professional annotators, supporting on-demand data annotation services, such as speech, image, video, point cloud and Natural Language Processing (NLP) Data, etc. Please visit us at https://www.nexdata.ai/computerVisionTraining?source=Datarade
  7. h

    qa-annotate

    • huggingface.co
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chandana (2023). qa-annotate [Dataset]. https://huggingface.co/datasets/surya-ai/qa-annotate
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 4, 2023
    Authors
    chandana
    Description

    surya-ai/qa-annotate dataset hosted on Hugging Face and contributed by the HF Datasets community

  8. R

    Label Mouth Jezz Re Annotate Dataset

    • universe.roboflow.com
    zip
    Updated Nov 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    new-workspace-lyioh (2022). Label Mouth Jezz Re Annotate Dataset [Dataset]. https://universe.roboflow.com/new-workspace-lyioh/label-mouth-jezz-re-annotate
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 9, 2022
    Dataset authored and provided by
    new-workspace-lyioh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Mouth Bounding Boxes
    Description

    Label Mouth Jezz Re Annotate

    ## Overview
    
    Label Mouth Jezz Re Annotate is a dataset for object detection tasks - it contains Mouth annotations for 219 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  9. I

    auto_annotate

    • app.ikomia.ai
    Updated Jan 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ikomia (2024). auto_annotate [Dataset]. https://app.ikomia.ai/hub/algorithms/auto_annotate/
    Explore at:
    Dataset updated
    Jan 20, 2024
    Dataset authored and provided by
    Ikomia
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Auto-annotate images with GroundingDINO and SAM models Auto-annotate images using a text prompt. GroundingDINO is employed for object detection (bounding boxes), followed by MobileSAM or SAM for segmentation. The annotations are then saved in both Pascal VOC format and COCO format....

  10. h

    fgan-annotate-dataset

    • huggingface.co
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frank Ebeledike (2024). fgan-annotate-dataset [Dataset]. https://huggingface.co/datasets/ebelfrank/fgan-annotate-dataset
    Explore at:
    Dataset updated
    Feb 16, 2024
    Authors
    Frank Ebeledike
    Description

    ebelfrank/fgan-annotate-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. D

    Data Annotation and Labeling Tool Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Annotation and Labeling Tool Report [Dataset]. https://www.marketreportanalytics.com/reports/data-annotation-and-labeling-tool-53987
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Annotation and Labeling Tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in the burgeoning fields of artificial intelligence (AI) and machine learning (ML). The market, estimated at $2 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching approximately $10 billion by 2033. This expansion is fueled by several key factors. The automotive industry leverages data annotation for autonomous driving systems development, while healthcare utilizes it for medical image analysis and diagnostics. Financial services increasingly adopt these tools for fraud detection and risk management, and retail benefits from enhanced product recommendations and customer experience personalization. The prevalence of both supervised and unsupervised learning techniques necessitates diverse data annotation solutions, fostering market segmentation across manual, semi-supervised, and automatic tools. Market restraints include the high cost of data annotation and the need for skilled professionals to manage the annotation process effectively. However, the ongoing advancements in automation and the decreasing cost of computing power are mitigating these challenges. The North American market currently holds a significant share, with strong growth also expected from Asia-Pacific regions driven by increasing AI adoption. Competition in the market is intense, with established players like Labelbox and Scale AI competing with emerging companies such as SuperAnnotate and Annotate.io. These companies offer a range of solutions catering to varying needs and budgets. The market's future growth hinges on continued technological innovation, including the development of more efficient and accurate annotation tools, integration with existing AI/ML platforms, and expansion into new industry verticals. The increasing adoption of edge AI and the growth of data-centric AI further enhance the market potential. Furthermore, the growing need for data privacy and security is likely to drive demand for tools that prioritize data protection, posing both a challenge and an opportunity for providers to offer specialized solutions. The market's success will depend on the ability of vendors to adapt to evolving needs and provide scalable, cost-effective, and reliable annotation solutions.

  12. h

    fitcheck-annotate-dataset

    • huggingface.co
    Updated Oct 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    barryallen (2025). fitcheck-annotate-dataset [Dataset]. https://huggingface.co/datasets/barryallen16/fitcheck-annotate-dataset
    Explore at:
    Dataset updated
    Oct 11, 2025
    Authors
    barryallen
    Description

    barryallen16/fitcheck-annotate-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  13. h

    tt-annotate

    • huggingface.co
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rian Touchent (2025). tt-annotate [Dataset]. https://huggingface.co/datasets/rntc/tt-annotate
    Explore at:
    Dataset updated
    Aug 4, 2025
    Authors
    Rian Touchent
    Description

    rntc/tt-annotate dataset hosted on Hugging Face and contributed by the HF Datasets community

  14. D

    Data Labeling Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Labeling Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/data-labeling-tools-1368998
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Data Labeling Tools market: Explore key trends, growth drivers, and leading companies shaping the future of AI. This in-depth analysis projects significant expansion through 2033, revealing opportunities and challenges in this vital sector for machine learning. Learn more now!

  15. D

    Image Annotation Tool Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Image Annotation Tool Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/image-annotation-tool-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Image Annotation Tool Market Outlook



    The global image annotation tool market size is projected to grow from approximately $700 million in 2023 to an estimated $2.5 billion by 2032, exhibiting a remarkable compound annual growth rate (CAGR) of 15.2% over the forecast period. The surging demand for machine learning and artificial intelligence applications is driving this robust market expansion. Image annotation tools are crucial for training AI models to recognize and interpret images, a necessity across diverse industries.



    One of the key growth factors fueling the image annotation tool market is the rapid adoption of AI and machine learning technologies across various sectors. Organizations in healthcare, automotive, retail, and many other industries are increasingly leveraging AI to enhance operational efficiency, improve customer experiences, and drive innovation. Accurate image annotation is essential for developing sophisticated AI models, thereby boosting the demand for these tools. Additionally, the proliferation of big data analytics and the growing necessity to manage large volumes of unstructured data have amplified the need for efficient image annotation solutions.



    Another significant driver is the increasing use of autonomous systems and applications. In the automotive industry, for instance, the development of autonomous vehicles relies heavily on annotated images to train algorithms for object detection, lane discipline, and navigation. Similarly, in the healthcare sector, annotated medical images are indispensable for developing diagnostic tools and treatment planning systems powered by AI. This widespread application of image annotation tools in the development of autonomous systems is a critical factor propelling market growth.



    The rise of e-commerce and the digital retail landscape has also spurred demand for image annotation tools. Retailers are using these tools to optimize visual search features, personalize shopping experiences, and enhance inventory management through automated recognition of products and categories. Furthermore, advancements in computer vision technology have expanded the capabilities of image annotation tools, making them more accurate and efficient, which in turn encourages their adoption across various industries.



    Data Annotation Software plays a pivotal role in the image annotation tool market by providing the necessary infrastructure for labeling and categorizing images efficiently. These software solutions are designed to handle various annotation tasks, from simple bounding boxes to complex semantic segmentation, enabling organizations to generate high-quality training datasets for AI models. The continuous advancements in data annotation software, including the integration of machine learning algorithms for automated labeling, have significantly enhanced the accuracy and speed of the annotation process. As the demand for AI-driven applications grows, the reliance on robust data annotation software becomes increasingly critical, supporting the development of sophisticated models across industries.



    Regionally, North America holds the largest share of the image annotation tool market, driven by significant investments in AI and machine learning technologies and the presence of leading technology companies. Europe follows, with strong growth supported by government initiatives promoting AI research and development. The Asia Pacific region presents substantial growth opportunities due to the rapid digital transformation in emerging economies and increasing investments in technology infrastructure. Latin America and the Middle East & Africa are also expected to witness steady growth, albeit at a slower pace, due to the gradual adoption of advanced technologies.



    Component Analysis



    The image annotation tool market by component is segmented into software and services. The software segment dominates the market, encompassing a variety of tools designed for different annotation tasks, from simple image labeling to complex polygonal, semantic, or instance segmentation. The continuous evolution of software platforms, integrating advanced features such as automated annotation and machine learning algorithms, has significantly enhanced the accuracy and efficiency of image annotations. Furthermore, the availability of open-source annotation tools has lowered the entry barrier, allowing more organizations to adopt these technologies.



    Services associated with image ann

  16. A

    Automated Data Annotation Tool Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Automated Data Annotation Tool Report [Dataset]. https://www.archivemarketresearch.com/reports/automated-data-annotation-tool-562743
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The automated data annotation tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, valued at approximately $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033. This significant expansion is fueled by several key factors. The proliferation of AI-powered applications across various industries, including healthcare, automotive, and finance, necessitates vast amounts of accurately annotated data. Furthermore, the ongoing advancements in deep learning algorithms and the emergence of sophisticated annotation tools are streamlining the data annotation process, making it more efficient and cost-effective. The market is segmented by tool type (text, image, and others) and application (commercial and personal use), with the commercial segment currently dominating due to the substantial investment by enterprises in AI initiatives. Geographic distribution shows a strong concentration in North America and Europe, reflecting the high adoption rate of AI technologies in these regions; however, Asia-Pacific is expected to show significant growth in the coming years due to increasing technological advancements and investments in AI development. The competitive landscape is characterized by a mix of established technology giants and specialized data annotation providers. Companies like Amazon Web Services, Google, and IBM offer integrated annotation solutions within their broader cloud platforms, competing with smaller, more agile companies focusing on niche applications or specific annotation types. The market is witnessing a trend toward automation within the annotation process itself, with AI-assisted tools increasingly employed to reduce manual effort and improve accuracy. This trend is expected to drive further market growth, even as challenges such as data security and privacy concerns, as well as the need for skilled annotators, persist. However, the overall market outlook remains positive, indicating continued strong growth potential through 2033. The increasing demand for AI and ML, coupled with technological advancements in annotation tools, is expected to overcome existing challenges and drive the market towards even greater heights.

  17. R

    Box Annotate Dataset

    • universe.roboflow.com
    zip
    Updated Apr 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cheese (2025). Box Annotate Dataset [Dataset]. https://universe.roboflow.com/cheese-m2a5z/box-annotate
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 20, 2025
    Dataset authored and provided by
    Cheese
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Box Defects Bounding Boxes
    Description

    Box Annotate

    ## Overview
    
    Box Annotate is a dataset for object detection tasks - it contains Box Defects annotations for 432 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  18. Data from: annotate

    • kaggle.com
    zip
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syair Dafiq (2023). annotate [Dataset]. https://www.kaggle.com/datasets/syairdafiq/annotate/code
    Explore at:
    zip(1559827 bytes)Available download formats
    Dataset updated
    Nov 17, 2023
    Authors
    Syair Dafiq
    Description

    Dataset

    This dataset was created by Syair Dafiq

    Contents

  19. E

    INCEpTION Text Annotation Platform

    • live.european-language-grid.eu
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). INCEpTION Text Annotation Platform [Dataset]. https://live.european-language-grid.eu/catalogue/tool-service/23683
    Explore at:
    Dataset updated
    Sep 2, 2024
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    INCEpTION is an open-source text annotation tool primarily designed to annotate text documents. It supports annotations of words and sentences as well as linking annotations to each other.

    • Collaborative Annotation: Multiple users can work on the same project, with built-in support for inter-annotator agreement metrics and different workflow management schemes.
    • Customizable Annotation Layers: Users can define custom annotation schemas and layers tailored to specific project needs.
    • Knowledge Base Integration: Annotations can be linked to knowledge bases and terminologies such as Wikidata, SNOMED CT and other RDF/OWL/OBO resources.
    • Machine Learning Integration: INCEpTION can train and use machine learning models to suggest annotations, improving the efficiency of the annotation process.
    • Interoperability: It supports a wide range of data formats (e.g., XMI, CoNLL, TSV), making it easy to import and export data for use with other NLP tools.

    These features make INCEpTION a comprehensive solution for building and managing annotated corpora.

  20. Annotated Waste Dataset

    • kaggle.com
    zip
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suman Kunwar (2025). Annotated Waste Dataset [Dataset]. https://www.kaggle.com/datasets/sumn2u/annotated-waste-dataset
    Explore at:
    zip(9589318 bytes)Available download formats
    Dataset updated
    Jun 14, 2025
    Authors
    Suman Kunwar
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset is a subset of the Garbage Dataset. It includes 50 images from each of the following classes: biological, cardboard, glass, metal, paper, plastic, and trash. All images are annotated using annotate-lab.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NecleusAIPublic (2025). Data Annotate Dataset [Dataset]. https://universe.roboflow.com/necleusaipublic/data-annotate-ojqb1

Data Annotate Dataset

data-annotate-ojqb1

data-annotate-dataset

Explore at:
zipAvailable download formats
Dataset updated
Jul 23, 2025
Dataset authored and provided by
NecleusAIPublic
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Variables measured
2 Bounding Boxes
Description

Here are a few use cases for this project:

  1. Historical Weapon Classification: This computer vision model can be utilized by historians, archeologists, and museum curators to classify and catalog historical weapons and artifacts, including swords, arrows, guns, and knives, enabling them to better understand and contextualize the weapons' origins and usage throughout history.

  2. Video Game Asset Management: Game developers can use the Data Annotate model to automatically tag and categorize in-game assets, such as weapons and visual effects, to streamline their development process and more easily manage game content.

  3. Prop and Costume Design: The model can aid prop and costume designers in the film, theater, and cosplay industries by identifying and categorizing various weapons and related items, allowing them to find suitable props or inspirations for their designs more quickly.

  4. Law Enforcement and Security: Data Annotate can be used by law enforcement agencies and security personnel to effectively detect weapons in surveillance footage or images, enabling them to respond more quickly to potential threats and uphold public safety.

  5. Educational Applications: Teachers and educators can use the model to develop interactive and engaging learning materials in the fields of history, art, and technology. It can help students identify and understand the significance of various weapons and their roles in shaping human history and culture.

Search
Clear search
Close search
Google apps
Main menu