100+ datasets found
  1. R

    We Do A Little Annotating Dataset

    • universe.roboflow.com
    zip
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coin Archer (2023). We Do A Little Annotating Dataset [Dataset]. https://universe.roboflow.com/coin-archer/we-do-a-little-annotating
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 13, 2023
    Dataset authored and provided by
    Coin Archer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Brown Cells Bounding Boxes
    Description

    We Do A Little Annotating

    ## Overview
    
    We Do A Little Annotating is a dataset for object detection tasks - it contains Brown Cells annotations for 261 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  2. A

    Annotating Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Annotating Software Report [Dataset]. https://www.datainsightsmarket.com/reports/annotating-software-1447731
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The annotating software market is experiencing robust growth, driven by increasing demand across various sectors. The expanding adoption of digital content and the need for efficient data annotation in fields like machine learning, education, and business processes are key factors fueling this expansion. While precise market sizing for 2025 isn't provided, a reasonable estimation, considering typical software market growth and the provided CAGR, could place the market value at approximately $500 million. This is further substantiated by the presence of several established players like Ginger Labs Inc. and Readdle Inc., alongside emerging companies in regions like China. The market is segmented by application (campus and workplace) and type (web-based and on-premise), reflecting diverse user needs and deployment preferences. Web-based solutions are expected to dominate due to their accessibility and scalability advantages. Growth is anticipated across all regions, with North America and Europe currently holding significant market share, but the Asia-Pacific region is projected to witness the fastest growth rate due to increasing digitalization and technological advancements. Challenges include the need for user-friendly interfaces and robust security features to gain wider adoption. The competitive landscape features both established players and innovative startups, leading to continuous product development and market innovation. The forecast period of 2025-2033 suggests continued market expansion, potentially reaching over $1 billion by 2033. Sustained growth will depend on factors such as technological advancements (e.g., AI-powered annotation tools), improved user experience, and increased awareness of the benefits of annotation software across various industries. Addressing existing restraints, like data security concerns and the learning curve associated with complex software, will be crucial for continued market penetration and wider user adoption. The on-premise segment might see slower growth compared to the web-based segment, owing to higher initial investment and maintenance costs. However, industries with stringent data privacy requirements may continue to rely on on-premise solutions.

  3. D

    Data Annotation Service Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Annotation Service Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-annotation-service-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Annotation Service Market Outlook



    The global data annotation service market size was valued at approximately USD 1.7 billion in 2023 and is projected to reach around USD 8.3 billion by 2032, demonstrating a robust CAGR of 18.4% during the forecast period. The surge in demand for high-quality annotated datasets for machine learning and artificial intelligence (AI) applications is one of the primary growth factors driving this market. As the need for precise data labeling escalates, the data annotation service industry is set for significant expansion.



    One of the significant growth factors propelling the data annotation service market is the increasing adoption of AI and machine learning technologies across various industries. As organizations strive to automate processes, enhance customer experience, and gain insights from large datasets, the demand for accurately labeled data has skyrocketed. This trend is particularly evident in sectors like healthcare, automotive, and retail, where AI applications such as predictive analytics, autonomous vehicles, and personalized shopping experiences necessitate high-quality annotated data.



    Another critical driver for the data annotation service market is the growing complexity and volume of data generated globally. With the proliferation of IoT devices, social media platforms, and other digital ecosystems, the volume of data produced daily has reached unprecedented levels. To harness this data's potential, organizations require sophisticated data annotation services that can handle large-scale, multifaceted datasets. Consequently, the market for data annotation services is witnessing substantial growth as businesses aim to leverage big data effectively.



    Furthermore, the rising emphasis on data privacy and security regulations is encouraging organizations to outsource their data annotation needs to specialized service providers. With stringent compliance requirements such as GDPR, HIPAA, and CCPA, companies are increasingly turning to expert data annotation services to ensure data integrity and regulatory adherence. This outsourcing trend is further bolstering the market's growth as it allows businesses to focus on their core competencies while relying on specialized service providers for data annotation tasks.



    The evolution of Data Annotation Tool Software has played a pivotal role in the growth of the data annotation service market. These tools provide the necessary infrastructure to streamline the annotation process, ensuring efficiency and accuracy. By leveraging advanced algorithms and user-friendly interfaces, data annotation tool software enables annotators to handle complex datasets with ease. This technological advancement not only reduces the time and cost associated with manual annotation but also enhances the overall quality of the annotated data. As a result, organizations can deploy AI models more effectively, driving innovation across various sectors.



    The regional outlook for the data annotation service market reveals a dynamic landscape with significant growth potential across various geographies. North America currently dominates the market, driven by the rapid adoption of AI technologies and a strong presence of key industry players. However, the Asia Pacific region is poised for the fastest growth during the forecast period, attributed to the burgeoning tech industry, increasing investments in AI research, and a growing digital economy. Europe and Latin America are also expected to witness substantial growth, driven by advancements in AI and a rising focus on data-driven decision-making.



    Type Analysis



    The data annotation service market can be segmented by type into text, image, video, and audio annotation. Text annotation holds a significant share of the market, driven by the increasing use of natural language processing (NLP) applications across various industries. Annotating text data involves labeling entities, sentiments, and other linguistic features essential for training NLP models. As chatbots, virtual assistants, and sentiment analysis tools gain traction, the demand for high-quality text annotation services continues to grow.



    Image annotation is another critical segment, driven by the rising adoption of computer vision applications in industries such as automotive, healthcare, and retail. Image annotation involves labeling objects, boundaries, and other visual elements within images, enabling AI systems to recognize

  4. R

    Annotating Dataset

    • universe.roboflow.com
    zip
    Updated Mar 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datasetannotation (2025). Annotating Dataset [Dataset]. https://universe.roboflow.com/datasetannotation-evhue/annotating-qsjt4/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    datasetannotation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Traffic Signs Bounding Boxes
    Description

    Annotating

    ## Overview
    
    Annotating is a dataset for object detection tasks - it contains Traffic Signs annotations for 856 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. R

    Annotating Stationary Data Dataset

    • universe.roboflow.com
    zip
    Updated Nov 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annotating stationary data (2022). Annotating Stationary Data Dataset [Dataset]. https://universe.roboflow.com/annotating-stationary-data-bxbpl/annotating-stationary-data
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 10, 2022
    Dataset authored and provided by
    Annotating stationary data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Stationary Bounding Boxes
    Description

    Annotating Stationary Data

    ## Overview
    
    Annotating Stationary Data is a dataset for object detection tasks - it contains Stationary annotations for 493 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  6. E

    Annotated Web Tables

    • live.european-language-grid.eu
    csv
    Updated Sep 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Annotated Web Tables [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7387
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 25, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data sets used for experimental evaluation in the related publication:Matching Web Tables with Knowledge Base Entities: From Entity Lookups to Entity EmbeddingsInternational Semantic Web Conference (1) 2017: 260-277Vasilis Efthymiou Oktie Hassanzadeh Mariano Rodríguez-Muro Vassilis ChristophidesThe gold standard data sets are collections of web tables:T2D (v1) consists of a schema-level gold standard of 1,748 Web tables, manually annotated with class- and property-mappings, as well as an entity-level gold standard of 233 Web tables.Limaye consists of 400 manually annotated Web tables with entity-, class-, and property-level correspondences, where single cells (not rows) are mapped to entities. The corrected version of this gold standard is adapted to annotate rows with entities, from the annotations of the label column cells.WikipediaGS is an instance-level gold standard developed from 485K Wikipedia tables, in which links in the label column are used to infer the annotation of a row to a DBpedia entity. Note on license: please refer to the README.txt. Data is derived from Wikipedia and other sources may have different licenses.Wikipedia contents can be shared under the terms of Creative Commons Attribution-ShareAlike Licenseas outlined on Wikipedia: https://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_contentThe correspondences of the T2D Gold standard is provided under the terms of the Apache license. The Web tables are provided according the same terms of use, disclaimer of warranties and limitation of liabilities that apply to the Common Crawl corpus. The DBpedia subset is licensed under the terms of the Creative Commons Attribution-ShareAlike License and the GNU Free Documentation License that applies to DBpedia.Limaye gold standard is downloaded from: http://websail-fe.cs.northwestern.edu/TabEL/ (download date: August 25, 2016). Please refer to the original website and the following paper for more details and citation information:G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and Searching Web Tables Using Entities, Types and Relationships. PVLDB, 3(1):1338–1347, 2010.THIS DATA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

  7. Annotating Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Annotating Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/annotating-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Annotating Software Market Outlook



    The annotating software market, with a market size valued at approximately USD 1.2 billion in 2023, is poised for significant growth projected to reach USD 3 billion by 2032, at an impressive compound annual growth rate (CAGR) of 11%. This growth is driven by the increasing demand for efficient data labeling solutions critical in training machine learning models and advancing artificial intelligence applications. Factors such as the rise of big data, the burgeoning AI industry, and the growing need for accurate and efficient data management are propelling the expansion of this market. The integration of AI and machine learning in various industries is further enhancing the necessity for annotating software, establishing it as a pivotal component in modern data-driven strategies.



    The growth of the annotating software market is underpinned by several key factors, chief amongst them being the exponential increase in data generation across industries. With the proliferation of digital content and the Internet of Things (IoT), there is a burgeoning need for systems that can efficiently manage and interpret large volumes of data. Annotating software plays a crucial role in this context by enabling the accurate labeling of data, which is essential for the development and functioning of AI models. Additionally, the adoption of deep learning technologies and the need for high-quality training data have further fueled the demand for advanced annotating solutions. Organizations are increasingly recognizing the value of effectively labeled data, which in turn is driving investments in annotating software.



    Moreover, the escalating integration of artificial intelligence in business processes is another significant growth factor for the annotating software market. AI applications, such as natural language processing, computer vision, and autonomous systems, heavily rely on annotated data for training and functioning. As industries strive to enhance operational efficiency and decision-making capabilities through AI, the demand for robust annotating software is witnessing a substantial rise. Furthermore, advancements in cloud computing technologies are facilitating the deployment and scalability of annotating solutions, making them more accessible to a wider range of users. This technological synergy is expected to boost the market over the forecast period.



    Another critical driver of market growth is the expanding application of annotating software across diverse sectors such as healthcare, education, research, and media. In healthcare, for instance, annotated medical data is essential for developing diagnostic algorithms and personalized treatment plans. Similarly, in education and research, annotating software aids in organizing and analyzing vast amounts of academic and experimental data. The media and entertainment sector also leverages these tools for content categorization and metadata generation. The versatility of annotating software across these varied applications underscores its growing importance and is anticipated to contribute significantly to market expansion.



    Regionally, the annotating software market is experiencing notable growth across various geographies, with North America currently holding a dominant position due to its advanced technological infrastructure and high adoption of AI technologies. However, the Asia Pacific region is projected to emerge as a lucrative market, driven by rapid digitalization, increasing investments in AI, and a growing number of tech-savvy enterprises. Europe continues to show steady growth, propelled by strong demand for innovative technologies in research and development sectors. Meanwhile, regions such as Latin America and the Middle East & Africa are gradually adopting annotating solutions, leveraging them to enhance data management capabilities and support burgeoning AI initiatives.



    Component Analysis



    The annotating software market can be segmented by component into software and services. The software segment comprises various tools and platforms designed to facilitate the labeling and annotation of data. These solutions are critical for organizations aiming to optimize their data management processes and enhance the accuracy of their machine learning models. The software component is witnessing robust growth, driven by the increasing complexity of data sets and the need for sophisticated annotation capabilities. Vendors are continually innovating to provide more comprehensive solutions that offer advanced features such as automated annotation, integration with cloud services, and enhanced user interfaces. The growing reliance on

  8. R

    Annotating Close Door Dataset

    • universe.roboflow.com
    zip
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Idle Employee (2025). Annotating Close Door Dataset [Dataset]. https://universe.roboflow.com/idle-employee/annotating-close-door
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 1, 2025
    Dataset authored and provided by
    Idle Employee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Class Bounding Boxes
    Description

    Annotating Close Door

    ## Overview
    
    Annotating Close Door is a dataset for object detection tasks - it contains Class annotations for 1,856 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  9. v

    Global Healthcare Data Annotation Tools Market Size By Type Of Annotation,...

    • verifiedmarketresearch.com
    Updated Jan 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Healthcare Data Annotation Tools Market Size By Type Of Annotation, By Application, By End-User, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/healthcare-data-annotation-tools-market/
    Explore at:
    Dataset updated
    Jan 23, 2024
    Dataset authored and provided by
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2030
    Area covered
    Global
    Description

    Healthcare Data Annotation Tools Market Size And Forecast

    Healthcare Data Annotation Tools Market size was valued at USD 167.40 Million in 2023 and is projected to reach USD 719.15 Million by 2030, growing at a CAGR of 27.5% during the forecast period 2024-2030.

    Global Healthcare Data Annotation Tools Market Drivers

    The market drivers for the Healthcare Data Annotation Tools Market can be influenced by various factors. These may include:

    Increased Use of AI in Healthcare: There is an increasing need for high-quality annotated data in healthcare due to the use of AI and machine learning for activities like diagnostics, medical imaging analysis, and predictive analytics. Labelled Medical Datasets Are Necessary: Labelled datasets are necessary for machine learning model training and validation. Tools for annotating healthcare data are essential for accurately labelling patient records, medical imaging, and other types of healthcare data. Technological Developments in Medical Imaging: New developments in medical imaging technologies, such CT and MRI scans, provide a lot of complex data. These photos can be labelled and annotated with the help of data annotation tools for AI model training. Drug Development and Discovery: Artificial Intelligence is being utilised in pharmaceutical research to find and develop new drugs. Training AI models in this domain requires annotated data on biological processes, molecular structures, and clinical trial details. Accurate Diagnosis Improvement: AI models that can help medical practitioners diagnose patients more accurately, detect diseases early, and improve patient outcomes can be developed thanks to annotated datasets. Personalised Health Care: AI models that are capable of analysing patient-specific data are necessary given the trend towards personalised treatment. Training algorithms to generate individualised treatment suggestions requires access to annotated healthcare data. Standards of Quality and Regulatory Compliance: Accurate and well-annotated datasets are necessary for model training and validation in order to comply with regulatory regulations and quality standards in the healthcare industry, guaranteeing the dependability and security of AI applications. Healthcare Record Digitization is Growing: Large volumes of data are produced by the digital transformation of healthcare records, particularly electronic health records (EHRs), which can be used for artificial intelligence (AI) applications. Tools for annotating data help get this data ready for analysis. Partnership Between Tech and Healthcare Companies: AI solutions are developed through partnerships between technology businesses and healthcare organisations. For these cooperative efforts to be successful, accurate data annotation is essential. Demand for Empirical Data: For AI applications in healthcare, real-world evidence—obtained from real clinical procedures and patient data—is invaluable. Annotated real-world data aids in the creation of reliable and broadly applicable models. Expanding Recognition of Telemedicine: Large datasets that can be annotated to train AI models for telehealth applications are produced by the growing use of telemedicine and remote healthcare services. Emphasis on Early Intervention and Disease Prevention: In line with the healthcare industry's emphasis on proactive healthcare, AI models trained on annotated data can support early intervention and illness prevention measures. Innovation and Market Competitiveness: Innovation in healthcare technology is stimulated by the competitive environment. Aiming to create state-of-the-art AI solutions, organisations are driving the need for superior annotated healthcare data.

  10. D

    Data Labeling Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Labeling Market Report [Dataset]. https://www.datainsightsmarket.com/reports/data-labeling-market-20383
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data labeling market is experiencing robust growth, projected to reach $3.84 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 28.13% from 2025 to 2033. This expansion is fueled by the increasing demand for high-quality training data across various sectors, including healthcare, automotive, and finance, which heavily rely on machine learning and artificial intelligence (AI). The surge in AI adoption, particularly in areas like autonomous vehicles, medical image analysis, and fraud detection, necessitates vast quantities of accurately labeled data. The market is segmented by sourcing type (in-house vs. outsourced), data type (text, image, audio), labeling method (manual, automatic, semi-supervised), and end-user industry. Outsourcing is expected to dominate the sourcing segment due to cost-effectiveness and access to specialized expertise. Similarly, image data labeling is likely to hold a significant share, given the visual nature of many AI applications. The shift towards automation and semi-supervised techniques aims to improve efficiency and reduce labeling costs, though manual labeling will remain crucial for tasks requiring high accuracy and nuanced understanding. Geographical distribution shows strong potential across North America and Europe, with Asia-Pacific emerging as a key growth region driven by increasing technological advancements and digital transformation. Competition in the data labeling market is intense, with a mix of established players like Amazon Mechanical Turk and Appen, alongside emerging specialized companies. The market's future trajectory will likely be shaped by advancements in automation technologies, the development of more efficient labeling techniques, and the increasing need for specialized data labeling services catering to niche applications. Companies are focusing on improving the accuracy and speed of data labeling through innovations in AI-powered tools and techniques. Furthermore, the rise of synthetic data generation offers a promising avenue for supplementing real-world data, potentially addressing data scarcity challenges and reducing labeling costs in certain applications. This will, however, require careful attention to ensure that the synthetic data generated is representative of real-world data to maintain model accuracy. This comprehensive report provides an in-depth analysis of the global data labeling market, offering invaluable insights for businesses, investors, and researchers. The study period covers 2019-2033, with 2025 as the base and estimated year, and a forecast period of 2025-2033. We delve into market size, segmentation, growth drivers, challenges, and emerging trends, examining the impact of technological advancements and regulatory changes on this rapidly evolving sector. The market is projected to reach multi-billion dollar valuations by 2033, fueled by the increasing demand for high-quality data to train sophisticated machine learning models. Recent developments include: September 2024: The National Geospatial-Intelligence Agency (NGA) is poised to invest heavily in artificial intelligence, earmarking up to USD 700 million for data labeling services over the next five years. This initiative aims to enhance NGA's machine-learning capabilities, particularly in analyzing satellite imagery and other geospatial data. The agency has opted for a multi-vendor indefinite-delivery/indefinite-quantity (IDIQ) contract, emphasizing the importance of annotating raw data be it images or videos—to render it understandable for machine learning models. For instance, when dealing with satellite imagery, the focus could be on labeling distinct entities such as buildings, roads, or patches of vegetation.October 2023: Refuel.ai unveiled a new platform, Refuel Cloud, and a specialized large language model (LLM) for data labeling. Refuel Cloud harnesses advanced LLMs, including its proprietary model, to automate data cleaning, labeling, and enrichment at scale, catering to diverse industry use cases. Recognizing that clean data underpins modern AI and data-centric software, Refuel Cloud addresses the historical challenge of human labor bottlenecks in data production. With Refuel Cloud, enterprises can swiftly generate the expansive, precise datasets they require in mere minutes, a task that traditionally spanned weeks.. Key drivers for this market are: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Potential restraints include: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Notable trends are: Healthcare is Expected to Witness Remarkable Growth.

  11. D

    Data Annotation and Labeling Service Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Annotation and Labeling Service Report [Dataset]. https://www.archivemarketresearch.com/reports/data-annotation-and-labeling-service-17941
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global data annotation and labeling service market was valued at $17,530 million in 2025 and is projected to reach $48,460 million by 2033, exhibiting a CAGR of 8.1% during the forecast period (2025-2033). The market growth can be attributed to the increasing demand for annotated data in various industries, such as autonomous vehicles, healthcare, e-commerce, and agriculture. The increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies is another key factor driving the market growth. AI and ML algorithms require large amounts of labeled data to train and improve their performance. Data annotation services provide this labeled data by manually annotating and labeling images, text, audio, and video data. This enables AI and ML algorithms to be more accurate and efficient. Furthermore, the growing trend of outsourcing data annotation services to countries with lower labor costs is also contributing to the growth of the market. Executive Summary

    Data annotation and labeling services are essential for developing high-quality AI and ML models. The market is highly fragmented, with many small and medium-sized players. The market is expected to grow at a CAGR of 25% over the next five years, reaching a value of $1.5 billion by 2025.

    Key Findings

    The top five players in the market are Appen, Infosys BPM, iMerit, Alegion, and Prodigy. The market is geographically concentrated, with North America and Europe accounting for the majority of revenue. The market is driven by the growth of AI and ML, as well as the increasing demand for data annotation and labeling services.

  12. b

    A vocabulary for annotating vocabulary descriptions

    • bioregistry.io
    Updated Apr 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). A vocabulary for annotating vocabulary descriptions [Dataset]. https://bioregistry.io/vann
    Explore at:
    Dataset updated
    Apr 20, 2024
    Description

    This document describes a vocabulary for annotating descriptions of vocabularies with examples and usage notes.

  13. D

    Manual Data Annotation Tools Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Manual Data Annotation Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/manual-data-annotation-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Manual Data Annotation Tools Market Outlook



    In 2023, the global market size for manual data annotation tools is estimated at USD 1.2 billion, and it is projected to reach approximately USD 5.4 billion by 2032, growing at a compound annual growth rate (CAGR) of 18.3%. The burgeoning demand for high-quality annotated data to train machine learning models and enhance AI capabilities is a significant growth factor driving this market. As industries increasingly adopt AI and machine learning technologies, the need for accurate and comprehensive data annotation tools has become paramount, propelling the market to unprecedented heights.



    The rapid expansion of artificial intelligence and machine learning applications across various industries is one of the primary growth drivers for the manual data annotation tools market. High-quality labeled data is crucial for training sophisticated AI models, which in turn fuels the demand for efficient and effective annotation tools. Industries such as healthcare, automotive, and retail are leveraging AI to enhance operational efficiency and customer experience, further amplifying the need for advanced data annotation solutions.



    Technological advancements in data annotation tools are also significantly contributing to market growth. Innovations such as AI-assisted annotation, improved user interfaces, and integration capabilities with other data management platforms have made these tools more user-friendly and efficient. As a result, even organizations with limited technical expertise can now leverage these tools to annotate large datasets accurately, thereby accelerating the adoption and expansion of data annotation tools globally.



    The increasing prevalence of big data analytics is another critical factor driving market growth. Organizations are generating and collecting vast amounts of data daily, and the ability to annotate and analyze this data effectively is essential for extracting actionable insights. Manual data annotation tools play a crucial role in this process by providing the necessary infrastructure to label and categorize data accurately, enabling organizations to harness the full potential of their data assets.



    Data Collection And Labelling are foundational processes in the realm of AI and machine learning. As the volume of data generated by businesses and individuals continues to grow exponentially, the need for effective data collection and labeling becomes increasingly critical. This process involves gathering raw data and meticulously annotating it to create structured datasets that can be used to train machine learning models. The accuracy of data labeling directly impacts the performance of AI systems, making it a crucial step in developing reliable and efficient AI solutions. In sectors like healthcare and automotive, where precision is paramount, the demand for robust data collection and labeling practices is particularly high, driving innovation and investment in this area.



    From a regional perspective, North America currently holds the largest market share, driven by the high adoption rates of AI and machine learning technologies, significant investment in research and development, and the presence of key market players in the region. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the rapid digital transformation, increased investment in AI technologies, and the growing need for data annotation services in emerging economies such as China and India.



    Type Analysis



    Text annotation tools are a critical segment within the manual data annotation tools market. These tools enable the labeling of text data, which is essential for applications such as natural language processing (NLP), sentiment analysis, and chatbots. As the demand for NLP applications grows, so does the need for efficient text annotation tools. Companies are increasingly leveraging these tools to improve their customer service, automate responses, and enhance user experience, thereby driving the segment's growth.



    Image annotation tools form another significant segment in the market. These tools are used to label and categorize images, which is vital for training computer vision models. The automotive industry heavily relies on image annotation for developing autonomous driving systems, which need accurately labeled images to recognize objects and make decisions in real time. Additionally, sectors such

  14. p

    Data from: PhysioTag: An Open-Source Platform for Collaborative Annotation...

    • physionet.org
    Updated Apr 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucas McCullum; Benjamin Moody; Hasan Saeed; Tom Pollard; Xavier Borrat Frigola; Li-wei Lehman; Roger Mark (2023). PhysioTag: An Open-Source Platform for Collaborative Annotation of Physiological Waveforms [Dataset]. http://doi.org/10.13026/g06j-3612
    Explore at:
    Dataset updated
    Apr 25, 2023
    Authors
    Lucas McCullum; Benjamin Moody; Hasan Saeed; Tom Pollard; Xavier Borrat Frigola; Li-wei Lehman; Roger Mark
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    To develop robust algorithms for automated diagnosis of medical conditions such as cardiac arrhythmias, researchers require large collections of data with human expert annotations. Currently, there is a lack of accessible, open-source platforms for human experts to collaboratively develop these annotated datasets through a web interface. In this work, we developed a flexible, generalizable, web-based framework to enable multiple users to create and share annotations on multi-channel physiological waveforms. The software is simple to install and offers a range of features, including: user management and task customization; a programmatic interface for data import and export; and a leaderboard for annotation progress tracking.

  15. r

    TBC1-021 - Annotating TBC1-017 2

    • researchdata.edu.au
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PARADISEC (2025). TBC1-021 - Annotating TBC1-017 2 [Dataset]. http://doi.org/10.26278/VTAJ-6720
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    PARADISEC
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    Working with AG to annotate recording 'TBC1-017'. Language as given: Megiar

  16. Z

    Taxonomies for Semantic Research Data Annotation

    • data.niaid.nih.gov
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schröder, Lucas (2024). Taxonomies for Semantic Research Data Annotation [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7908854
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Schröder, Lucas
    Haas, Jan Ingo
    Göpfert, Christoph
    Gaedke, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 35 of 39 taxonomies that were the result of a systematic review. The systematic review was conducted with the goal of identifying taxonomies suitable for semantically annotating research data. A special focus was set on research data from the hybrid societies domain.

    The following taxonomies were identified as part of the systematic review:

    Filename

    Taxonomy Title

    acm_ccs

    ACM Computing Classification System [1]

    amec

    A Taxonomy of Evaluation Towards Standards [2]

    bibo

    A BIBO Ontology Extension for Evaluation of Scientific Research Results [3]

    cdt

    Cross-Device Taxonomy [4]

    cso

    Computer Science Ontology [5]

    ddbm

    What Makes a Data-driven Business Model? A Consolidated Taxonomy [6]

    ddi_am

    DDI Aggregation Method [7]

    ddi_moc

    DDI Mode of Collection [8]

    n/a

    DemoVoc [9]

    discretization

    Building a New Taxonomy for Data Discretization Techniques [10]

    dp

    Demopaedia [11]

    dsg

    Data Science Glossary [12]

    ease

    A Taxonomy of Evaluation Approaches in Software Engineering [13]

    eco

    Evidence & Conclusion Ontology [14]

    edam

    EDAM: The Bioscientific Data Analysis Ontology [15]

    n/a

    European Language Social Science Thesaurus [16]

    et

    Evaluation Thesaurus [17]

    glos_hci

    The Glossary of Human Computer Interaction [18]

    n/a

    Humanities and Social Science Electronic Thesaurus [19]

    hcio

    A Core Ontology on the Human-Computer Interaction Phenomenon [20]

    hft

    Human-Factors Taxonomy [21]

    hri

    A Taxonomy to Structure and Analyze Human–Robot Interaction [22]

    iim

    A Taxonomy of Interaction for Instructional Multimedia [23]

    interrogation

    A Taxonomy of Interrogation Methods [24]

    iot

    Design Vocabulary for Human–IoT Systems Communication [25]

    kinect

    Understanding Movement and Interaction: An Ontology for Kinect-Based 3D Depth Sensors [26]

    maco

    Thesaurus Mass Communication [27]

    n/a

    Thesaurus Cognitive Psychology of Human Memory [28]

    mixed_initiative

    Mixed-Initiative Human-Robot Interaction: Definition, Taxonomy, and Survey [29]

    qos_qoe

    A Taxonomy of Quality of Service and Quality of Experience of Multimodal Human-Machine Interaction [30]

    ro

    The Research Object Ontology [31]

    senses_sensors

    A Human-Centered Taxonomy of Interaction Modalities and Devices [32]

    sipat

    A Taxonomy of Spatial Interaction Patterns and Techniques [33]

    social_errors

    A Taxonomy of Social Errors in Human-Robot Interaction [34]

    sosa

    Semantic Sensor Network Ontology [35]

    swo

    The Software Ontology [36]

    tadirah

    Taxonomy of Digital Research Activities in the Humanities [37]

    vrs

    Virtual Reality and the CAVE: Taxonomy, Interaction Challenges and Research Directions [38]

    xdi

    Cross-Device Interaction [39]

    We converted the taxonomies into SKOS (Simple Knowledge Organisation System) representation. The following 4 taxonomies were not converted as they were already available in SKOS and were for this reason excluded from this dataset:

    1) DemoVoc, cf. http://thesaurus.web.ined.fr/navigateur/ available at https://thesaurus.web.ined.fr/exports/demovoc/demovoc.rdf

    2) European Language Social Science Thesaurus, cf. https://thesauri.cessda.eu/elsst/en/ available at https://zenodo.org/record/5506929

    3) Humanities and Social Science Electronic Thesaurus, cf. https://hasset.ukdataservice.ac.uk/hasset/en/ available at https://zenodo.org/record/7568355

    4) Thesaurus Cognitive Psychology of Human Memory, cf. https://www.loterre.fr/presentation/ available at https://skosmos.loterre.fr/P66/en/

    References

    [1] “The 2012 ACM Computing Classification System,” ACM Digital Library, 2012. https://dl.acm.org/ccs (accessed May 08, 2023).

    [2] AMEC, “A Taxonomy of Evaluation Towards Standards.” Aug. 31, 2016. Accessed: May 08, 2023. [Online]. Available: https://amecorg.com/amecframework/home/supporting-material/taxonomy/

    [3] B. Dimić Surla, M. Segedinac, and D. Ivanović, “A BIBO ontology extension for evaluation of scientific research results,” in Proceedings of the Fifth Balkan Conference in Informatics, in BCI ’12. New York, NY, USA: Association for Computing Machinery, Sep. 2012, pp. 275–278. doi: 10.1145/2371316.2371376.

    [4] F. Brudy et al., “Cross-Device Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning Across Multiple Devices,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, in CHI ’19. New York, NY, USA: Association for Computing Machinery, Mai 2019, pp. 1–28. doi: 10.1145/3290605.3300792.

    [5] A. A. Salatino, T. Thanapalasingam, A. Mannocci, F. Osborne, and E. Motta, “The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas,” in Lecture Notes in Computer Science 1137, D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and E. Simperl, Eds., Monterey, California, USA: Springer, Oct. 2018, pp. 187–205. Accessed: May 08, 2023. [Online]. Available: http://oro.open.ac.uk/55484/

    [6] M. Dehnert, A. Gleiss, and F. Reiss, “What makes a data-driven business model? A consolidated taxonomy,” presented at the European Conference on Information Systems, 2021.

    [7] DDI Alliance, “DDI Controlled Vocabulary for Aggregation Method,” 2014. https://ddialliance.org/Specification/DDI-CV/AggregationMethod_1.0.html (accessed May 08, 2023).

    [8] DDI Alliance, “DDI Controlled Vocabulary for Mode Of Collection,” 2015. https://ddialliance.org/Specification/DDI-CV/ModeOfCollection_2.0.html (accessed May 08, 2023).

    [9] INED - French Institute for Demographic Studies, “Thésaurus DemoVoc,” Feb. 26, 2020. https://thesaurus.web.ined.fr/navigateur/en/about (accessed May 08, 2023).

    [10] A. A. Bakar, Z. A. Othman, and N. L. M. Shuib, “Building a new taxonomy for data discretization techniques,” in 2009 2nd Conference on Data Mining and Optimization, Oct. 2009, pp. 132–140. doi: 10.1109/DMO.2009.5341896.

    [11] N. Brouard and C. Giudici, “Unified second edition of the Multilingual Demographic Dictionary (Demopaedia.org project),” presented at the 2017 International Population Conference, IUSSP, Oct. 2017. Accessed: May 08, 2023. [Online]. Available: https://iussp.confex.com/iussp/ipc2017/meetingapp.cgi/Paper/5713

    [12] DuCharme, Bob, “Data Science Glossary.” https://www.datascienceglossary.org/ (accessed May 08, 2023).

    [13] A. Chatzigeorgiou, T. Chaikalis, G. Paschalidou, N. Vesyropoulos, C. K. Georgiadis, and E. Stiakakis, “A Taxonomy of Evaluation Approaches in Software Engineering,” in Proceedings of the 7th Balkan Conference on Informatics Conference, in BCI ’15. New York, NY, USA: Association for Computing Machinery, Sep. 2015, pp. 1–8. doi: 10.1145/2801081.2801084.

    [14] M. C. Chibucos, D. A. Siegele, J. C. Hu, and M. Giglio, “The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations,” in The Gene Ontology Handbook, C. Dessimoz and N. Škunca, Eds., in Methods in Molecular Biology. New York, NY: Springer, 2017, pp. 245–259. doi: 10.1007/978-1-4939-3743-1_18.

    [15] M. Black et al., “EDAM: the bioscientific data analysis ontology,” F1000Research, vol. 11, Jan. 2021, doi: 10.7490/f1000research.1118900.1.

    [16] Council of European Social Science Data Archives (CESSDA), “European Language Social Science Thesaurus ELSST,” 2021. https://thesauri.cessda.eu/en/ (accessed May 08, 2023).

    [17] M. Scriven, Evaluation Thesaurus, 3rd Edition. Edgepress, 1981. Accessed: May 08, 2023. [Online]. Available: https://us.sagepub.com/en-us/nam/evaluation-thesaurus/book3562

    [18] Papantoniou, Bill et al., The Glossary of Human Computer Interaction. Interaction Design Foundation. Accessed: May 08, 2023. [Online]. Available: https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction

    [19] “UK Data Service Vocabularies: HASSET Thesaurus.” https://hasset.ukdataservice.ac.uk/hasset/en/ (accessed May 08, 2023).

    [20] S. D. Costa, M. P. Barcellos, R. de A. Falbo, T. Conte, and K. M. de Oliveira, “A core ontology on the Human–Computer Interaction phenomenon,” Data Knowl. Eng., vol. 138, p. 101977, Mar. 2022, doi: 10.1016/j.datak.2021.101977.

    [21] V. J. Gawron et al., “Human Factors Taxonomy,” Proc. Hum. Factors Soc. Annu. Meet., vol. 35, no. 18, pp. 1284–1287, Sep. 1991, doi: 10.1177/154193129103501807.

    [22] L. Onnasch and E. Roesler, “A Taxonomy to Structure and Analyze Human–Robot Interaction,” Int. J. Soc. Robot., vol. 13, no. 4, pp. 833–849, Jul. 2021, doi: 10.1007/s12369-020-00666-5.

    [23] R. A. Schwier, “A Taxonomy of Interaction for Instructional Multimedia.” Sep. 28, 1992. Accessed: May 09, 2023. [Online]. Available: https://eric.ed.gov/?id=ED352044

    [24] C. Kelly, J. Miller, A. Redlich, and S. Kleinman, “A Taxonomy of Interrogation Methods,”

  17. f

    Examples of correct model-predicted annotations.

    • plos.figshare.com
    xls
    Updated Aug 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Thompson; Sophia Ananiadou; Ioannis Basinas; Bendik C. Brinchmann; Christine Cramer; Karen S. Galea; Calvin Ge; Panagiotis Georgiadis; Jorunn Kirkeleit; Eelco Kuijpers; Nhung Nguyen; Roberto Nuñez; Vivi Schlünssen; Zara Ann Stokholm; Evana Amir Taher; Håkan Tinnerberg; Martie Van Tongeren; Qianqian Xie (2024). Examples of correct model-predicted annotations. [Dataset]. http://doi.org/10.1371/journal.pone.0307844.t008
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 15, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Paul Thompson; Sophia Ananiadou; Ioannis Basinas; Bendik C. Brinchmann; Christine Cramer; Karen S. Galea; Calvin Ge; Panagiotis Georgiadis; Jorunn Kirkeleit; Eelco Kuijpers; Nhung Nguyen; Roberto Nuñez; Vivi Schlünssen; Zara Ann Stokholm; Evana Amir Taher; Håkan Tinnerberg; Martie Van Tongeren; Qianqian Xie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An individual’s likelihood of developing non-communicable diseases is often influenced by the types, intensities and duration of exposures at work. Job exposure matrices provide exposure estimates associated with different occupations. However, due to their time-consuming expert curation process, job exposure matrices currently cover only a subset of possible workplace exposures and may not be regularly updated. Scientific literature articles describing exposure studies provide important supporting evidence for developing and updating job exposure matrices, since they report on exposures in a variety of occupational scenarios. However, the constant growth of scientific literature is increasing the challenges of efficiently identifying relevant articles and important content within them. Natural language processing methods emulate the human process of reading and understanding texts, but in a fraction of the time. Such methods can increase the efficiency of both finding relevant documents and pinpointing specific information within them, which could streamline the process of developing and updating job exposure matrices. Named entity recognition is a fundamental natural language processing method for language understanding, which automatically identifies mentions of domain-specific concepts (named entities) in documents, e.g., exposures, occupations and job tasks. State-of-the-art machine learning models typically use evidence from an annotated corpus, i.e., a set of documents in which named entities are manually marked up (annotated) by experts, to learn how to detect named entities automatically in new documents. We have developed a novel annotated corpus of scientific articles to support machine learning based named entity recognition relevant to occupational substance exposures. Through incremental refinements to the annotation process, we demonstrate that expert annotators can attain high levels of agreement, and that the corpus can be used to train high-performance named entity recognition models. The corpus thus constitutes an important foundation for the wider development of natural language processing tools to support the study of occupational exposures.

  18. Image Tagging and Annotation Services Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Image Tagging and Annotation Services Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-image-tagging-and-annotation-services-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Image Tagging and Annotation Services Market Outlook



    The global image tagging and annotation services market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.8 billion by 2032, growing at a compound annual growth rate (CAGR) of about 14%. This robust growth is driven by the exponential rise in demand for machine learning and artificial intelligence applications, which heavily rely on annotated datasets to train algorithms effectively. The surge in digital content creation and the increasing need for organized data for analytical purposes are also significant contributors to the market expansion.



    One of the primary growth factors for the image tagging and annotation services market is the increasing adoption of AI and machine learning technologies across various industries. These technologies require large volumes of accurately labeled data to function optimally, making image tagging and annotation services crucial. Specifically, sectors such as healthcare, automotive, and retail are investing in AI-driven solutions that necessitate high-quality annotated images to enhance machine learning models' efficiency. For example, in healthcare, annotated medical images are essential for developing tools that can aid in diagnostics and treatment decisions. Similarly, in the automotive industry, annotated images are pivotal for the development of autonomous vehicles.



    Another significant driver is the growing emphasis on improving customer experience through personalized solutions. Companies are leveraging image tagging and annotation services to better understand consumer behavior and preferences by analyzing visual content. In retail, for instance, businesses analyze customer-generated images to tailor marketing strategies and improve product offerings. Additionally, the integration of augmented reality (AR) and virtual reality (VR) in various applications has escalated the need for precise image tagging and annotation, as these technologies rely on accurately labeled datasets to deliver immersive experiences.



    Data Collection and Labeling are foundational components in the realm of image tagging and annotation services. The process of collecting and labeling data involves gathering vast amounts of raw data and meticulously annotating it to create structured datasets. These datasets are crucial for training machine learning models, enabling them to recognize patterns and make informed decisions. The accuracy of data labeling directly impacts the performance of AI systems, making it a critical step in the development of reliable AI applications. As industries increasingly rely on AI-driven solutions, the demand for high-quality data collection and labeling services continues to rise, underscoring their importance in the broader market landscape.



    The rising trend of digital transformation across industries has also significantly bolstered the demand for image tagging and annotation services. Organizations are increasingly investing in digital tools that can automate processes and enhance productivity. Image annotation plays a critical role in enabling technologies such as computer vision, which is instrumental in automating tasks ranging from quality control to inventory management. Moreover, the proliferation of smart devices and the Internet of Things (IoT) has led to an unprecedented amount of image data generation, further fueling the need for efficient image tagging and annotation services to make sense of the vast data deluge.



    From a regional perspective, North America is currently the largest market for image tagging and annotation services, attributed to the early adoption of advanced technologies and the presence of numerous tech giants investing in AI and machine learning. The region is expected to maintain its dominance due to ongoing technological advancements and the growing demand for AI solutions across various sectors. Meanwhile, the Asia Pacific region is anticipated to experience the fastest growth during the forecast period, driven by rapid industrialization, increasing internet penetration, and the rising adoption of AI technologies in countries like China, India, and Japan. The European market is also witnessing steady growth, supported by government initiatives promoting digital innovation and the use of AI-driven applications.



    Service Type Analysis



    The service type segment in the image tagging and annotation services market is bifurcated into manual annotation and automa

  19. f

    Guidelines and evaluation methods for annotating non-manual markers in sign...

    • uvaauas.figshare.com
    xml
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    L.D. Esselink; Floris Roelofsen; M. Oomen (2024). Guidelines and evaluation methods for annotating non-manual markers in sign languages - test set for guidelines version 1 [Dataset]. http://doi.org/10.21942/uva.25103648.v1
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    L.D. Esselink; Floris Roelofsen; M. Oomen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These annotation files were used to test the first version of our annotation guidelines. They involve annotations of non-manual markers in video recordings of polar questions in Sign Language of the Netherlands. The annotation guidelines and the videos corresponding to the annotations can also be found under related materials.

  20. D

    Data Labeling Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Labeling Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-labeling-tools-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Labeling Tools Market Outlook



    The global data labeling tools market size was valued at approximately USD 1.6 billion in 2023, and it is anticipated to reach around USD 8.5 billion by 2032, growing at a robust CAGR of 20.3% over the forecast period. The rapid expansion of the data labeling tools market can be attributed to the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies across various industries, coupled with the growing need for annotated data to train AI models accurately.



    One of the primary growth factors driving the data labeling tools market is the exponential increase in data generation across industries. As organizations collect vast amounts of data, the need for structured and annotated data becomes paramount to derive actionable insights. Data labeling tools play a crucial role in categorizing and tagging this data, thus enabling more effective data utilization in AI and ML applications. Furthermore, the rising investments in AI technologies by both private and public sectors have significantly boosted the demand for data labeling solutions.



    Another significant growth factor is the advancements in natural language processing (NLP) and computer vision technologies. These advancements have heightened the demand for high-quality labeled data, particularly in sectors like healthcare, retail, and automotive. For instance, in the healthcare sector, data labeling is essential for developing AI models that can assist in diagnostics and treatment planning. Similarly, in the automotive industry, labeled data is crucial for enhancing autonomous driving technologies. The ongoing advancements in these areas continue to fuel the market growth for data labeling tools.



    Additionally, the increasing trend of remote work and the emergence of digital platforms have also contributed to the market's growth. With more businesses shifting to online operations and remote work environments, the need for AI-driven tools to manage and analyze data has become more critical. Data labeling tools have emerged as vital components in this digital transformation, enabling organizations to maintain productivity and efficiency. The growing reliance on digital platforms further accentuates the necessity for accurate data annotation, thereby propelling the market forward.



    Data Annotation Tools are pivotal in the realm of AI and ML, serving as the backbone for creating high-quality labeled datasets. These tools streamline the process of annotating data, making it more efficient and less prone to human error. With the rise of AI applications across various sectors, the demand for sophisticated data annotation tools has surged. They not only enhance the accuracy of AI models but also significantly reduce the time required for data preparation. As organizations strive to harness the full potential of AI, the role of data annotation tools becomes increasingly crucial, ensuring that the data fed into AI systems is both accurate and reliable.



    From a regional perspective, North America holds the largest share in the data labeling tools market due to the early adoption of AI and ML technologies and the presence of major technology companies. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by the rapid digitalization, increasing investments in AI research, and the growing presence of AI startups. Europe, Latin America, and the Middle East & Africa are also witnessing significant growth, albeit at a slower pace, due to the rising awareness and adoption of data labeling solutions.



    Type Analysis



    The data labeling tools market is segmented into various types, including image, text, audio, and video labeling tools. Image labeling tools hold a significant market share owing to the extensive use of computer vision applications in various industries such as healthcare, automotive, and retail. These tools are essential for training AI models to recognize and categorize visual data, making them indispensable for applications like medical imaging, autonomous vehicles, and facial recognition. The growing demand for high-quality labeled images is a key driver for this segment.



    Text labeling tools are another critical segment, driven by the increasing adoption of NLP technologies. Text data labeling is vital for applications such as sentiment analysis, chatbots, and language translation services. With the proliferation of text-based d

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Coin Archer (2023). We Do A Little Annotating Dataset [Dataset]. https://universe.roboflow.com/coin-archer/we-do-a-little-annotating

We Do A Little Annotating Dataset

we-do-a-little-annotating

we-do-a-little-annotating-dataset

Explore at:
zipAvailable download formats
Dataset updated
Apr 13, 2023
Dataset authored and provided by
Coin Archer
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Variables measured
Brown Cells Bounding Boxes
Description

We Do A Little Annotating

## Overview

We Do A Little Annotating is a dataset for object detection tasks - it contains Brown Cells annotations for 261 images.

## Getting Started

You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.

  ## License

  This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Search
Clear search
Close search
Google apps
Main menu