The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.13°C.]What does the data show? This dataset shows the change in annual temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Note, as the values in this dataset are averaged over a year they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare annual average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.
PeriodDescription 1981-2000 baselineAverage temperature (°C) for the period 2001-2020 (recent past)Average temperature (°C) for the period 2001-2020 (recent past) changeTemperature change (°C) relative to 1981-2000 1.5°C global warming level changeTemperature change (°C) relative to 1981-2000 2°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-2000 3°C global warming level changeTemperature change (°C) relative to 1981-2000 4°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Annual Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for the 1981-2000 baseline, 2001-2020 period and each warming level. They are named 'tas annual change' (change in air 'temperature at surface'), the warming level or historic time period, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas annual change 2.0 median' is the median value for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas annual change 2.0 median' is named 'tas_annual_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas annual change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.
What is the annual average temperature in Stockholm? In 2023, the annual average temperature stood at eight degrees Celsius in Sweden's capital city. That was a decline of 1.7 degrees compared to the record high reported in 2020.
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
Predicted changes in annual average precipitation (%), and annual average temperature (℃) for the near future (2041-2070) and far future (2071-2100) in Republic of Korea (ROK). Projections are based on the ACCESS-ESM1-5 model for scenarios SSP245 and SSP585.
This raster contains absolute change in annual average temperature values. Data are ensemble mean values across 20 global climate models from the CMIP5 experiment [Taylor et al., 2012], downscaled to a 4km grid. For more information on the downscaling method and to access the raw data used to create this dataset, please see Abatzoglou and Brown, [2012] and the Northwest Climate Science Center.We used the MACAv2-metdata monthly minimum and maximum temperature datasets. Average temperature was calculated as the arithmetic mean of minimum and maximum temperature datasets. Average temperature was averaged over water years (1 Oct to 30 Sept). Absolute change values are the difference between the mean historical (1975-2005) and future (2071-2090, RCP8.5) annual average temperatures. Units are degrees Celsius.More information on the project associated with this dataset is available from the U.S. Forest Service Rocky Mountain Research Station, including detailed metadata; these raster data are available for download here.
In 2024, the average annual temperature in the United States was 13.06 degrees Celsius, the warmest year recorded in the period in consideration. In 1895, this figure stood at 10.18 degrees Celsius. Recent years have been some of the warmest years recorded in the country.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average Rainfall (mm) and average Temperature (centigrade) for the North East England and East England Met Office Climate district, which includes Lincolnshire.
This dataset shows the average Rainfall in millimetres and average Temperature in centigrade, by month, meteorological season, and annual calendar year.
The data is sourced from the UK Met Office website. See the Source link for more information about the data and the area it covers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map plots the Change in Average Annual Temperature if Earth’s long-term average temperature reaches specific levels of warming. These Global Warming Levels (GWLs) correspond to global average temperature increases of 1.5, 2, 3, and 4 °C above pre-industrial levels measured from 1851 to 1900. On the Fahrenheit scale, these warming levels are 2.7, 3.6, 5.4, and 7.2 °F. As of the 2020s, global average temperature has already increased around 2 °F above pre-industrial levels.Each layer of the map is style with the same range of data so that the spatial patterns of change can be compared across all scenarios. The projections are derived from downscaled climate models from LOCA2 and STAR-ESDM, and were used in the 5th National Climate Assessment. Click on the layers below to view more detailed descriptions of how the data was generated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in China increased to 8.40 celsius in 2023 from 8.13 celsius in 2022. This dataset includes a chart with historical data for China Average Temperature.
https://data.mfe.govt.nz/license/attribution-3-0-new-zealand/https://data.mfe.govt.nz/license/attribution-3-0-new-zealand/
Temperature change is influenced by changes in atmospheric composition that result from greenhouse gas emissions. It is also linked to atmospheric circulation changes (eg the El Niño southern oscillation). It can have a significant effect on agriculture, energy demand, and recreation. The primary purpose of the dataset is to provide a long time series which represents the nation-scale state of climate with respect to temperature in New Zealand. Further information can be found in: Tait, A, Macara, G, & Paul, V. (2014) Preparation of climate datasets for the 2015 Environmental Synthesis Report: Temperature, Rainfall, Wind, Sunshine and Soil Moisture. Prepared for Ministry for the Environment. Available at https://data.mfe.govt.nz/x/Fwn9AL on the Ministry for the Environment dataservice (https://data.mfe.govt.nz/). This dataset relates to the "National temperature time series" measure on the Environmental Indicators, Te taiao Aotearoa website.
Average over the period 1961-1990 of the annual average of the average daily temperature (°C)
Title: Dataset: Temperatures and flow rates for some springs in New England, 2017-18
Authors: Dallas Abbott1, William Menke1, Juliette Lamoureux2, Dionne Hutson2 and Alyssa Marrero3
1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 2City College of New York, New York, New York 3Kingsborough Community College, Brooklyn, New York Summary: In 2017-2018, we visited a suite of about 80 springs in New York and New England (USA). We measured water temperature with a Lascar EL-WIFI-TP digital temperature logger (0.1°C precision) at the closest accessible point to the source, which was usually the reservoir inside a spring house or the outflow pipe from a spring house. When both reservoir and outflow pipe were accessible, we found that temperatures agreed to within ±0.2°C. We also measured the flow rate of the spring with a bucket and a stopwatch, with a repeatability of about ±10%.
A temperature anomaly ∆T was determined for each spring by subtracting the annual average temperature at the spring site. Annually averaged temperatures are rarely available for spring sites but are available for airports via the National Oceanic and Atmospheric Administration’s (NOAA’s) National Center for Environmental Information. We therefore used the annually averaged temperature for the nearest airport (typically ~10-20 km away), corrected to the elevation of the spring using the dry adiabatic lapse rate of 9.8°C/km.
Data was used in the following paper:
Menke, W., Lamoureux, J., Abbott, D., Hopper, E., Hutson, D. and Marrero, A., 2018. Crustal heating and lithospheric alteration and erosion associated with asthenospheric upwelling beneath southern New England (USA). Journal of Geophysical Research: Solid Earth, 123(10), pp.8995-9008.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
This data-set contains 3 fields for each fixed period (1981-2000, 2001-2020) and Global Warming Level (1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C) combination: the median, 2nd lowest and 2nd highest among the 12 ensemble members. The fields are named accordingly; e.g. the 2nd lowest at 2.5°C is tas_annual_25_lowerTo understand the data, refer to the LACS Scientific Detail.To understand how to explore the data, see the User Guides available on the Climate Data Portal.
Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to the standard Lambert Azimuthal Equal Area projection used for the North American Environmental Atlas. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.