The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.
This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
It is estimated that the Second World War was responsible for the deaths of approximately 3.76 percent of the world's population between 1939 and 1945. In 2022, where the world's population reached eight billion, this would be equal to the death of around 300 million people.
The region that experienced the largest loss of life relative to its population was the South Seas Mandate - these were former-German territories given to the Empire of Japan through the Treaty of Versailles following WWI, and they make up much of the present-day countries of the Marshall Islands, Micronesia, the Northern Mariana Islands (U.S. territory), and Palau. Due to the location and strategic importance of these islands, they were used by the Japanese as launching pads for their attacks on Pearl Harbor and in the South Pacific, while they were also taken as part of the Allies' island-hopping strategy in their counteroffensive against Japan. This came at a heavy cost for the local populations, a large share of whom were Japanese settlers who had moved there in the 1920s and 1930s. Exact figures for both pre-war populations and wartime losses fluctuate by source, however civilian losses in these islands were extremely high as the Japanese defenses resorted to more extreme measures in the war's final phase.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Death Rate: Crude: per 1000 People data was reported at 8.400 Ratio in 2016. This records a decrease from the previous number of 8.440 Ratio for 2015. United States US: Death Rate: Crude: per 1000 People data is updated yearly, averaging 8.700 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 9.800 Ratio in 1968 and a record low of 7.900 Ratio in 2009. United States US: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominican Republic DO: Death Rate: Crude: per 1000 People data was reported at 6.102 Ratio in 2016. This records an increase from the previous number of 6.081 Ratio for 2015. Dominican Republic DO: Death Rate: Crude: per 1000 People data is updated yearly, averaging 6.560 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 16.053 Ratio in 1960 and a record low of 5.957 Ratio in 1996. Dominican Republic DO: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Dominican Republic – Table DO.World Bank: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
These charts show the trend in world population growth from the year 1CE to 2100, and the future decline in birth and death rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de441841https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de441841
Abstract (en): These data are a collection of demographic statistics for the populations of 125 countries or areas throughout the world, prepared by the Statistical Office of the United Nations. The units of analysis are both country and data year. The primary source of data is a set of questionnaires sent monthly and annually to national statistical services and other appropriate government offices. Data include statistics on approximately 50 types of causes of death for the years 1966 through 1974 for males, females, and total populations. Causes of death in 125 countries or areas throughout the world between the years 1966 and 1974. 2005-11-04 On 2005-03-14 new files were added to one or more datasets. These files included additional setup files as well as one or more of the following: SAS program, SAS transport, SPSS portable, and Stata system files. The metadata record was revised 2005-11-04 to reflect these additions. The causes of death are classified according to the 6th, 7th, and 8th versions of an abbreviated list of the World Health Organization's INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES, INJURIES, AND CAUSES OF DEATH. Therefore, data for causes of death are not necessarily comparable across countries or data years. Users should refer to Variable 5 in the Variable List for full discussion of this problem. Users interested in comparing deaths for countries or years that use different versions of the Abbreviated list should consult two publications: A. Joan Klebba, and Alice B. Dolman. COMPARABILITY OF MORTALITY STATISTICS FOR THE SEVENTH AND EIGHTH REVISIONS OF THE INTERNATIONAL CLASSIFICATION OF DISEASES, UNITED STATES. Rockville, MD: United States Department of Health, Education, and Welfare. Public Health Service. Health Services and Mental Health Administration. National Center for Health Statistics, 1975, and World Health Organization. MANUAL OF THE INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES, INJURIES, AND CAUSES OF DEATH. Geneva, Switzerland: World Health Organization, 1967.The user should note that countries have data covering a variety of time spans (the maximum span being 1965-1973), and the data have not been padded to supply missing data codes for those years for which a country does not have data. Thus, Egypt has data for years 1965 through 1972, while Kenya has data for only 1970. (See Appendix D in the codebook to determine the years for which a country has data.)It is important that any user of these data consult the United Nations' DEMOGRAPHIC YEARBOOK, 1976, for further explanation of the data's limitations. Certain countries have modified reporting procedures which are presented in both the footnotes and the technical notes accompanying the tables in the Yearbook. There is no way to identify these problems using only the machine-readable data.In order to eliminate unnecessary repetition of identifying information, data were merged so that each record now contains all the data for a country for one particular year. In this process, breakdowns of deaths by ethnic group and/or urban/rural classification were omitted since only a few countries provided such information. Each record now contains the data for the number of deaths from each cause of death for male, female, and total.While the data appear to be in a rectangular matrix, such is not the case. This occurs because different versions of the abbreviated list are referenced in different data years. The lack of a rectangular data matrix does little to restrict the manageability of the dataset. See codebook for examples.While the data have been reformatted and documented by ICPSR staff, there has been no attempt to verify the accuracy and consistency of the data received from the U.N. Statistical Office.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Thailand TH: Completeness of Total Death Reporting data was reported at 78.765 % in 2009. This records a decrease from the previous number of 81.048 % for 2008. Thailand TH: Completeness of Total Death Reporting data is updated yearly, averaging 81.048 % from Dec 2005 (Median) to 2009, with 3 observations. The data reached an all-time high of 86.559 % in 2005 and a record low of 78.765 % in 2009. Thailand TH: Completeness of Total Death Reporting data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Thailand – Table TH.World Bank.WDI: Health Statistics. Completeness of total death reporting is the number of total deaths reported by national statistics authorities to the United Nations Statistics Division's Demography Yearbook divided by the number of total deaths estimated by the United Nations Population Division.; ; The United Nations Statistics Division's Population and Vital Statistics Report and the United Nations Population Division's World Population Prospects.; Weighted average;
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.
Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.
Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique ‘humped’ age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.Methods and FindingsThe model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.ConclusionsWe present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and demographic models, this model makes it possible to project future age-specific mortality profiles and number of deaths for countries with generalized HIV epidemics.
The demographic indicators of the People’s Republic of China, Hong Kong, Macao, and Taiwan were compiled from (1) the World Bank United Nations (UN) Population Division, World Population Prospects: 2022 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) UN Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Program. The dataset consists of descriptive demographic statistics of the People’s Republic of China, Hong Kong, Macao, and Taiwan and includes the following indicators: (1) total population, (2) population by broad age groups, (3) annual rate of population change, (4) crude birth rate and crude death rate, (5) annual number of births and deaths, (6) total fertility, (7) mortality under age 5, (8) life expectancy at birth by sex, (9) life expectancy at birth (both sexes combined), (10) annual natural change and net migration, (11) population by age and sex: 2101, (12) annual number of deaths per 1,000 population, and (13) annual number of deaths.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hungary HU: Death Rate: Crude: per 1000 People data was reported at 13.000 Ratio in 2016. This records a decrease from the previous number of 13.400 Ratio for 2015. Hungary HU: Death Rate: Crude: per 1000 People data is updated yearly, averaging 13.100 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 14.500 Ratio in 1993 and a record low of 9.600 Ratio in 1961. Hungary HU: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hungary – Table HU.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.