In 2024, Louisiana recorded ***** inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only **** inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of **** inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Precipitation in the United States increased to 735.83 mm in 2023 from 707.98 mm in 2022. This dataset includes a chart with historical data for the United States Average Precipitation.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
This EnviroAtlas dataset provides the average annual precipitation by 12-digit Hydrologic Unit (HUC). The values were estimated from maps produced by the PRISM Climate Group, Oregon State University. The original data was at the scale of 800 m grid cells representing average precipitation from 1981-2010 in mm. The data was converted to inches of precipitation and then zonal statistics were estimated for a final value of average annual precipitation for each 12 digit HUC. For more information about the original dataset please refer to the PRISM website at http://www.prism.oregonstate.edu/. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The majority of the wettest cities in the United States are located in the Southeast. The major city with the most precipitation is New Orleans, Louisiana, which receives an average of 1592 millimeters (62.7 inches) of precipitation every year, based on an average between 1981 and 2010.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Annual average precipitation represents the average total rainfall seen across the United States in each year. Data is sourced from the National Oceanic and Atmospheric Administration's National Center for Environmental information.
On the continental scale, climate is an important determinant of the distributions of plant taxa and ecoregions. To quantify and depict the relations between specific climate variables and these distributions, we placed modern climate and plant taxa distribution data on an approximately 25-kilometer (km) equal-area grid with 27,984 points that cover Canada and the continental United States (Thompson and others, 2015). The gridded climatic data include annual and monthly temperature and precipitation, as well as bioclimatic variables (growing degree days, mean temperatures of the coldest and warmest months, and a moisture index) based on 1961-1990 30-year mean values from the University of East Anglia (UK) Climatic Research Unit (CRU) CL 2.0 dataset (New and others, 2002), and absolute minimum and maximum temperatures for 1951-1980 interpolated from climate-station data (WeatherDisc Associates, 1989). As described below, these data were used to produce portions of the "Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America" (hereafter referred to as "the Atlas"; Thompson and others, 1999a, 1999b, 2000, 2006, 2007, 2012a, 2015). Evolution of the Atlas Over the 16 Years Between Volumes A & B and G: The Atlas evolved through time as technology improved and our knowledge expanded. The climate data employed in the first five Atlas volumes were replaced by more standard and better documented data in the last two volumes (Volumes F and G; Thompson and others, 2012a, 2015). Similarly, the plant distribution data used in Volumes A through D (Thompson and others, 1999a, 1999b, 2000, 2006) were improved for the latter volumes. However, the digitized ecoregion boundaries used in Volume E (Thompson and others, 2007) remain unchanged. Also, as we and others used the data in Atlas Volumes A through E, we came to realize that the plant distribution and climate data for areas south of the US-Mexico border were not of sufficient quality or resolution for our needs and these data are not included in this data release. The data in this data release are provided in comma-separated values (.csv) files. We also provide netCDF (.nc) files containing the climate and bioclimatic data, grouped taxa and species presence-absence data, and ecoregion assignment data for each grid point (but not the country, state, province, and county assignment data for each grid point, which are available in the .csv files). The netCDF files contain updated Albers conical equal-area projection details and more precise grid-point locations. When the original approximately 25-km equal-area grid was created (ca. 1990), it was designed to be registered with existing data sets, and only 3 decimal places were recorded for the grid-point latitude and longitude values (these original 3-decimal place latitude and longitude values are in the .csv files). In addition, the Albers conical equal-area projection used for the grid was modified to match projection irregularities of the U.S. Forest Service atlases (e.g., Little, 1971, 1976, 1977) from which plant taxa distribution data were digitized. For the netCDF files, we have updated the Albers conical equal-area projection parameters and recalculated the grid-point latitudes and longitudes to 6 decimal places. The additional precision in the location data produces maximum differences between the 6-decimal place and the original 3-decimal place values of up to 0.00266 degrees longitude (approximately 143.8 m along the projection x-axis of the grid) and up to 0.00123 degrees latitude (approximately 84.2 m along the projection y-axis of the grid). The maximum straight-line distance between a three-decimal-point and six-decimal-point grid-point location is 144.2 m. Note that we have not regridded the elevation, climate, grouped taxa and species presence-absence data, or ecoregion data to the locations defined by the new 6-decimal place latitude and longitude data. For example, the climate data described in the Atlas publications were interpolated to the grid-point locations defined by the original 3-decimal place latitude and longitude values. Interpolating the data to the 6-decimal place latitude and longitude values would in many cases not result in changes to the reported values and for other grid points the changes would be small and insignificant. Similarly, if the digitized Little (1971, 1976, 1977) taxa distribution maps were regridded using the 6-decimal place latitude and longitude values, the changes to the gridded distributions would be minor, with a small number of grid points along the edge of a taxa's digitized distribution potentially changing value from taxa "present" to taxa "absent" (or vice versa). These changes should be considered within the spatial margin of error for the taxa distributions, which are based on hand-drawn maps with the distributions evidently generalized, or represented by a small, filled circle, and these distributions were subsequently hand digitized. Users wanting to use data that exactly match the data in the Atlas volumes should use the 3-decimal place latitude and longitude data provided in the .csv files in this data release to represent the center point of each grid cell. Users for whom an offset of up to 144.2 m from the original grid-point location is acceptable (e.g., users investigating continental-scale questions) or who want to easily visualize the data may want to use the data associated with the 6-decimal place latitude and longitude values in the netCDF files. The variable names in the netCDF files generally match those in the data release .csv files, except where the .csv file variable name contains a forward slash, colon, period, or comma (i.e., "/", ":", ".", or ","). In the netCDF file variable short names, the forward slashes are replaced with an underscore symbol (i.e., "_") and the colons, periods, and commas are deleted. In the netCDF file variable long names, the punctuation in the name matches that in the .csv file variable names. The "country", "state, province, or territory", and "county" data in the .csv files are not included in the netCDF files. Data included in this release: - Geographic scope. The gridded data cover an area that we labelled as "CANUSA", which includes Canada and the USA (excluding Hawaii, Puerto Rico, and other oceanic islands). Note that the maps displayed in the Atlas volumes are cropped at their northern edge and do not display the full northern extent of the data included in this data release. - Elevation. The elevation data were regridded from the ETOPO5 data set (National Geophysical Data Center, 1993). There were 35 coastal grid points in our CANUSA study area grid for which the regridded elevations were below sea level and these grid points were assigned missing elevation values (i.e., elevation = 9999). The grid points with missing elevation values occur in five coastal areas: (1) near San Diego (California, USA; 1 grid point), (2) Vancouver Island (British Columbia, Canada) and the Olympic Peninsula (Washington, USA; 2 grid points), (3) the Haida Gwaii (formerly Queen Charlotte Islands, British Columbia, Canada) and southeast Alaska (USA, 9 grid points), (4) the Canadian Arctic Archipelago (22 grid points), and (5) Newfoundland (Canada; 1 grid point). - Climate. The gridded climatic data provided here are based on the 1961-1990 30-year mean values from the University of East Anglia (UK) Climatic Research Unit (CRU) CL 2.0 dataset (New and others, 2002), and include annual and monthly temperature and precipitation. The CRU CL 2.0 data were interpolated onto the approximately 25-km grid using geographically-weighted regression, incorporating local lapse-rate estimation and correction. Additional bioclimatic variables (growing degree days on a 5 degrees Celsius base, mean temperatures of the coldest and warmest months, and a moisture index calculated as actual evapotranspiration divided by potential evapotranspiration) were calculated using the interpolated CRU CL 2.0 data. Also included are absolute minimum and maximum temperatures for 1951-1980 interpolated in a similar fashion from climate-station data (WeatherDisc Associates, 1989). These climate and bioclimate data were used in Atlas volumes F and G (see Thompson and others, 2015, for a description of the methods used to create the gridded climate data). Note that for grid points with missing elevation values (i.e., elevation values equal to 9999), climate data were created using an elevation value of -120 meters. Users may want to exclude these climate data from their analyses (see the Usage Notes section in the data release readme file). - Plant distributions. The gridded plant distribution data align with Atlas volume G (Thompson and others, 2015). Plant distribution data on the grid include 690 species, as well as 67 groups of related species and genera, and are based on U.S. Forest Service atlases (e.g., Little, 1971, 1976, 1977), regional atlases (e.g., Benson and Darrow, 1981), and new maps based on information available from herbaria and other online and published sources (for a list of sources, see Tables 3 and 4 in Thompson and others, 2015). See the "Notes" column in Table 1 (https://pubs.usgs.gov/pp/p1650-g/table1.html) and Table 2 (https://pubs.usgs.gov/pp/p1650-g/table2.html) in Thompson and others (2015) for important details regarding the species and grouped taxa distributions. - Ecoregions. The ecoregion gridded data are the same as in Atlas volumes D and E (Thompson and others, 2006, 2007), and include three different systems, Bailey's ecoregions (Bailey, 1997, 1998), WWF's ecoregions (Ricketts and others, 1999), and Kuchler's potential natural vegetation regions (Kuchler, 1985), that are each based on distinctive approaches to categorizing ecoregions. For the Bailey and WWF ecoregions for North America and the Kuchler potential natural vegetation regions for the contiguous United States (i.e.,
Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.
Numbered series of NOAA publications that contain environmental information climate summaries and station normals. Each series contains a volume for each state, climate division, or station. Series that are or would be found in this library are as follows: -- No. 10: Climatic Summary of the United States, establishment of stations to 1930, by climate division -- No. 11: Climatic Summary of the United States-Supplement for 1931-52, by state -- No. 20: Monthly Station Climate Summaries for 1971-2000. Station summaries of particular interest to agriculture, industry, and engineering applications. These summaries contain a variety of statistics for temperature, precipitation, snow, freeze dates, and degree day elements for 4,273 stations. -- No. 20: Station Climatological Summaries, station list through 1985. -- No. 20: Supplement 1: Frost/Freeze Data. -- No. 30: Summary of Hourly Observations, data 1949-55 (varies), by station. -- No. 60: Climates of the States, published 1960, by state. -- No. 81: Decennial Census of United States Climate - Monthly Normals of Temperature, Precipitation, and Heating and Cooling Degree Days, by state, reused for 30 year periods 1931-60 thru 1971-2000, by station. -- No. 81: Supplement 1: Monthly Precipitation Probabilities. -- No. 81: Supplement 2: Annual Degree Days to Selected Bases. -- No. 82: Decennial Census of United States Climate - Summary of Hourly Observations 1951-1960, by station. -- No. 84: Daily Station Normals of Temperature, Precipitation and Heating and Cooling Degree Days, by station. -- No. 85: Monthly Divisional Normals and Standard Deviations of Temperature, Precipitation, and Heating and Cooling Degree Days, by climate division. -- No. 86: Decennial Census of United States Climate - Climatic Summary of the U.S. 1951-1960, by state. -- No. 90: Airport Climatological Summary, 1965-1974, by station.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al. (https://doi.org/10.1029/2007EO470006) at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones. Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes.�Plant hardiness zones provide a general indication of the extent of overwinter stress experienced by plants. PHZ are based on the average annual extreme minimum temperatures and have been used by horticulturists to evaluate the cold hardiness of plants. Specifically, the value used here is the absolute minimum temperature achieved for each year and reported as the 30-year mean. Because they reflect cold tolerance for many plant species, including woody ones, hardiness zones are most likely to reflect plant range limits. The zonal variations caused by warming temperatures in the future will therefore be useful to approximately delineate niche constraints of many plant species and hence their future range potential. Plant hardiness zones and subzones were delineated according to the USDA definitions, which break the geography into zones by 10 �F (5.56 �C) increments from zone 1 (-55 to -45.6 �C) to zone 13 (15.7 to 22 �C) of annual extreme minimum temperature. To define the coldest day per year, daily minimum temperatures were identified within the period July 1 to June 30, with the nominal year assigned to the first 6 months of the 12-month period.�Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
https://www.bco-dmo.org/dataset/664254/licensehttps://www.bco-dmo.org/dataset/664254/license
Temperature and rainfall data for St. John USVI. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv acquisition_description=Based on Tsounis and Edmunds (In press), Ecosphere:\u00a0
Physical environmental conditions were characterized using three features that are well-known to affect coral reef community dynamics (described in Glynn 1993, Rogers 1993, Fabricius et al. 2005): seawater temperature, rainfall, and hurricane intensity. Together, these were used to generate seven dependent variables describing physical environmental features. Seawater temperature was recorded at each site every 15-30 min using a variety of logging sensors (see Edmunds 2006 for detailed information on the temperature measurement regime). Seawater temperature was characterized using five dependent variables calculated for each calendar year: mean temperature, maximum temperature, and minimum temperature (all averaged by day and month for each year), as well as the number of days hotter than 29.3 deg C (\u201chot days\u201d), and the number of days with temperatures greater than or equal to 26.0 deg C (\u201ccold days\u201d). The temperature defining "hot days" was determined by the coral bleaching threshold for St. John ("%5C%22http://www.coral.noaa.gov/research/climate-change/coral-%0Ableaching.html%5C%22">http://www.coral.noaa.gov/research/climate-change/coral- bleaching.html), and the temperature defining "cold days" was taken as 26.0 deg C which marks the lower 12th percentile of all daily temperatures between 1989 and 2005 (Edmunds, 2006). The upper temperature limit was defined by the local bleaching threshold, and the lower limit defined the 12th\u00a0percentile of local seawater temperature records (see Edmunds 2006 for details). Rainfall was measured at various locations around St. John (see\u00a0http://www.sercc.com) but often on the north shore (courtesy of R.\u00a0Boulon) (see Edmunds and Gray 2014). To assess the influence of hurricanes, a categorical index of local hurricane impact was employed, with the index based on qualitative estimates of wave impacts in Great Lameshur Bay as a function of wind speed, wind direction, and distance of the nearest approach of each hurricane to the study area (see Gross and Edmunds 2015). Index values of 0 were assigned to years with no hurricanes, 0.5 to hurricanes with low impacts, and 1 for hurricanes with high impacts, and years were characterized by the sum of their hurricane index values. awards_0_award_nid=55191 awards_0_award_number=DEB-0841441 awards_0_data_url=http://www.nsf.gov/awardsearch/showAward?AWD_ID=0841441&HistoricalAwards=false awards_0_funder_name=National Science Foundation awards_0_funding_acronym=NSF awards_0_funding_source_nid=350 awards_0_program_manager=Saran Twombly awards_0_program_manager_nid=51702 awards_1_award_nid=562085 awards_1_award_number=OCE-1332915 awards_1_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1332915 awards_1_funder_name=NSF Division of Ocean Sciences awards_1_funding_acronym=NSF OCE awards_1_funding_source_nid=355 awards_1_program_manager=David L. Garrison awards_1_program_manager_nid=50534 awards_2_award_nid=562593 awards_2_award_number=DEB-1350146 awards_2_data_url=http://www.nsf.gov/awardsearch/showAward?AWD_ID=1350146 awards_2_funder_name=NSF Division of Environmental Biology awards_2_funding_acronym=NSF DEB awards_2_funding_source_nid=550432 awards_2_program_manager=Betsy Von Holle awards_2_program_manager_nid=701685 cdm_data_type=Other comment=Physical Data G. Tsounis and P. Edmunds, PIs Version 10 November 2016 Conventions=COARDS, CF-1.6, ACDD-1.3 data_source=extract_data_as_tsv version 2.3 19 Dec 2019 defaultDataQuery=&time<now doi=10.1575/1912/bco-dmo.664755 infoUrl=https://www.bco-dmo.org/dataset/664254 institution=BCO-DMO instruments_0_acronym=PrecipGauge instruments_0_dataset_instrument_description=Measured rainfall instruments_0_dataset_instrument_nid=664662 instruments_0_description=measures rain or snow precipitation instruments_0_instrument_external_identifier=https://vocab.nerc.ac.uk/collection/L05/current/381/ instruments_0_instrument_name=Precipitation Gauge instruments_0_instrument_nid=671 instruments_0_supplied_name=Precipitation gauge instruments_1_dataset_instrument_description=Measured seawater temperature instruments_1_dataset_instrument_nid=664661 instruments_1_description=Records temperature data over a period of time. instruments_1_instrument_name=Temperature Logger instruments_1_instrument_nid=639396 instruments_1_supplied_name=Temperature logger metadata_source=https://www.bco-dmo.org/api/dataset/664254 param_mapping={'664254': {}} parameter_source=https://www.bco-dmo.org/mapserver/dataset/664254/parameters people_0_affiliation=California State University Northridge people_0_affiliation_acronym=CSU-Northridge people_0_person_name=Peter J. Edmunds people_0_person_nid=51536 people_0_role=Principal Investigator people_0_role_type=originator people_1_affiliation=California State University Northridge people_1_affiliation_acronym=CSU-Northridge people_1_person_name=Dr Georgios Tsounis people_1_person_nid=565353 people_1_role=Co-Principal Investigator people_1_role_type=originator people_2_affiliation=Woods Hole Oceanographic Institution people_2_affiliation_acronym=WHOI BCO-DMO people_2_person_name=Hannah Ake people_2_person_nid=650173 people_2_role=BCO-DMO Data Manager people_2_role_type=related project=St. John LTREB,VI Octocorals projects_0_acronym=St. John LTREB projects_0_description=Long Term Research in Environmental Biology (LTREB) in US Virgin Islands: From the NSF award abstract: In an era of growing human pressures on natural resources, there is a critical need to understand how major ecosystems will respond, the extent to which resource management can lessen the implications of these responses, and the likely state of these ecosystems in the future. Time-series analyses of community structure provide a vital tool in meeting these needs and promise a profound understanding of community change. This study focuses on coral reef ecosystems; an existing time-series analysis of the coral community structure on the reefs of St. John, US Virgin Islands, will be expanded to 27 years of continuous data in annual increments. Expansion of the core time-series data will be used to address five questions: (1) To what extent is the ecology at a small spatial scale (1-2 km) representative of regional scale events (10's of km)? (2) What are the effects of declining coral cover in modifying the genetic population structure of the coral host and its algal symbionts? (3) What are the roles of pre- versus post-settlement events in determining the population dynamics of small corals? (4) What role do physical forcing agents (other than temperature) play in driving the population dynamics of juvenile corals? and (5) How are populations of other, non-coral invertebrates responding to decadal-scale declines in coral cover? Ecological methods identical to those used over the last two decades will be supplemented by molecular genetic tools to understand the extent to which declining coral cover is affecting the genetic diversity of the corals remaining. An information management program will be implemented to create broad access by the scientific community to the entire data set. The importance of this study lies in the extreme longevity of the data describing coral reefs in a unique ecological context, and the immense potential that these data possess for understanding both the patterns of comprehensive community change (i.e., involving corals, other invertebrates, and genetic diversity), and the processes driving them. Importantly, as this project is closely integrated with resource management within the VI National Park, as well as larger efforts to study coral reefs in the US through the NSF Moorea Coral Reef LTER, it has a strong potential to have scientific and management implications that extend further than the location of the study. The following publications and data resulted from this project: 2015 Edmunds PJ, Tsounis G, Lasker HR (2015) Differential distribution of octocorals and scleractinians around St. John and St. Thomas, US Virgin Islands. Hydrobiologia. doi: 10.1007/s10750-015-2555-zoctocoral - sp. abundance and distributionDownload complete data for this publication (Excel file) 2015 Lenz EA, Bramanti L, Lasker HR, Edmunds PJ. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs DOI 10.1007/s00338-015-1315-xoctocoral survey - densitiesoctocoral counts - photoquadrats vs. insitu surveyoctocoral literature reviewDownload complete data for this publication (Excel file) 2015 Privitera-Johnson, K., et al., Density-associated recruitment in octocoral communities in St. John, US Virgin Islands, J.Exp. Mar. Biol. Ecol. DOI 10.1016/j.jembe.2015.08.006octocoral recruitmentDownload complete data for this publication (Excel file) 2014 Edmunds PJ. Landscape-scale variation in coral reef community structure in the United States Virgin Islands. Marine Ecology Progress Series 509: 137–152. DOI 10.3354/meps10891. Data at MCR-VINP. Download complete data for this publication (Excel file) 2014 Edmunds PJ, Nozawa Y, Villanueva RD. Refuges modulate coral recruitment in the Caribbean and Pacific. Journal of Experimental Marine Biology and Ecology 454: 78-84. DOI: 10.1016/j.jembe.2014.02.00 Data at MCR-VINP.Download complete data for this publication (Excel file) 2014 Edmunds PJ, Gray SC. The effects of storms, heavy rain, and sedimentation on the shallow coral reefs of St. John, US Virgin Islands. Hydrobiologia 734(1):143-148. Data at MCR-VINP.Download complete data for this publication (Excel file) 2014 Levitan, D, Edmunds PJ, Levitan K. What makes a species common? No evidence of density-dependent recruitment or mortality of the sea urchin Diadema antillarum after the 1983-1984 mass mortality. Oecologia. DOI
Predicted temperature and precipitation values were generated throughout the state of Massachusetts using a stochastic weather generator (SWG) model to develop various climate change scenarios (Steinschneider and Najibi, 2022a). This data release contains temperature and precipitation statistics (SWG_outputTable.csv) derived from the SWG model under the surface warming derived from the RCP 8.5 climate change emissions scenario at 30-year moving averages centered around 2030, 2050, 2070, 2090. During the climate modeling process, extreme precipitation values were also generated by scaling previously published intensity-duration-frequency (IDF) values from the NOAA Atlas 14 database (Perica and others, 2015) by a factor per degree expected warming produced from the SWG model generator (Najibi and others, 2022; Steinschneider and Najibi, 2022b, c). These newly generated IDF values (IDF_outputTable.csv) account for expected changes in extreme precipitation driven by variations in weather associated with climate change throughout the state of Massachusetts. The data presented here were developed in collaboration with the Massachusetts Executive Office of Energy and Environmental Affairs and housed on the Massachusetts climate change clearinghouse webpage (Massachusetts Executive Office of Energy and Environmental Affairs, 2022). References: Massachusetts Executive Office of Energy and Environmental Affairs, 2022, Resilient MA Maps and Data Center at URL https://resilientma-mapcenter-mass-eoeea.hub.arcgis.com/ Najibi, N., Mukhopadhyay, S., and Steinschneider, S., 2022, Precipitation scaling with temperature in the Northeast US: Variations by weather regime, season, and precipitation intensity: Geophysical Research Letters, v. 49, no. 8, 14 p., https://doi.org/10.1029/2021GL097100. Perica, S., Pavlovic, S., St. Laurent, M., Trypaluk, C., Unruh, D., Martin, D., and Wilhite, O., 2015, NOAA Atlas 14 Volume 10 Version 3, Precipitation-Frequency Atlas of the United States, Northeastern States (revised 2019): NOAA, National Weather Service, https://doi.org/10.25923/99jt-a543. Steinschneider, S., and Najibi, N., 2022a, A weather-regime based stochastic weather generator for climate scenario development across Massachusetts: Technical Documentation, Cornell University, https://eea-nescaum-dataservices-assets-prd.s3.amazonaws.com/cms/GUIDELINES/FinalTechnicalDocumentation_WGEN_20220405.pdf. Steinschneider, S., and Najibi, N., 2022b, Future projections of extreme precipitation across Massachusetts—a theory-based approach: Technical Documentation, Cornell University, https://eea-nescaum-dataservices-assets-prd.s3.amazonaws.com/cms/GUIDELINES/FinalTechnicalDocumentation_IDF_Curves_Dec2021.pdf. Steinschneider, S., and Najibi, N., 2022c, Observed and projected scaling of daily extreme precipitation with dew point temperature at annual and seasonal scales across the northeast United States: Journal of Hydrometeorology, v. 23, no. 3, p. 403-419, https://doi.org/10.1175/JHM-D-21-0183.1.
The U.S. Annual/Seasonal Climate Normals for 1991 to 2020 are 30-year averages of meteorological parameters that provide users the information needed to understand typical climate conditions for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Annual/Seasonal Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs), lengths of growing seasons, probabilities of first or last temperature threshold exceedances. All data utilized in the computation of the 1991-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has projections of VAR in decadal increments from 1950 to 2100 and for three Shared Socioeconomic Pathways (SSPs). The variables included are:Annual total precipitation (inches) Annual highest precipitation total for a single day (inches) Annual highest precipitation total over a 5-day period (inches) Annual highest precipitation total over a 10-day period (inches) Annual total precipitation for all days exceeding the 90th percentile (inches) Annual total precipitation for all days exceeding the 95th percentile (inches) Annual total precipitation for all days exceeding the 99th percentile (inches) This layer uses data from the LOCA2 and STAR-ESDM downscaled climate models for the Contiguous United States. Further processing by the NOAA Technical Support Unit at CICS-NC and Esri are explained below.For each time and SSP, there are minimum, maximum, and mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available in Understanding CRIS Data. The combination of time and geography is available for a weighted ensemble of 16 climate projections. More details on the models included in the ensemble and the weighting methodologies can be found in CRIS Data Preparation. Other climate variables are available from the CRIS website’s Data Gallery page or can be accessed in the table below. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides projected values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesProjected climate threshold values (e.g. Days Over 90°F) were calculated for each year from 2005 to 2100. Additionally, values are available for the modeled history runs from 1951 - 2005. The modeled history and future projections have been merged into a single time series and averaged by decade.Climate ScenariosClimate models use future scenarios of greenhouse gas concentrations and human activities to project overall change. These different scenarios are called the Shared Socioeconomic Pathways (SSPs). Three different SSPs are available here: 2-4.5, 3-7.0, and 5-8.5 (STAR does not have SSP3-7.0). The number before the dash represents a societal behavior scenario. The number after the dash indicates the amount of radiative forcing (watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but SSP 2-4.5 currently aligns with the international targets of the COP-26 agreement. SSP3-7.0 may be the most likely scenario based on current emission trends. SSP5-8.5 acts as a cautionary tale, providing a worst-case scenario if reductions in greenhouse gasses are not undertaken. Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
One of the most basic ways to visualize global temperature data over time is with what has come to be called "warming stripes." Popularized by Ed Hawkins, this style of graphic is a row of thin vertical stripes, each showing one year's temperature compared to a long-term average. These simple visualizations do not use numbers or dates; the pattern of colors alone tells the story of climate change and variability over time. For this webmap, meteorologist Jared Rennie has produced climate stripes images for temperature and precipitation trends in U.S. counties from 1895–2022. Users can click on a location and see a temperature stripes image and a precipitation stripes image based on NOAA climate data. A previous version of this map included Alaska, but not Hawaii or Washington, D.C. This map includes all three. Description of DataData originates from NOAA NCEI's climate at a glance page, which uses a 5-kilometer gridded data set, known as nClimgrid. This data set provides temperature and precipitation information for each month back to 1895 for the contiguous United States ("the Lower 48"). Annual estimates since 1895 are derived from the monthly data and aggregated onto each county for the continental United States, including the District of Columbia. For Alaska, data go back to 1925; for Hawaii, the images are based on data from individual stations dating back to 1955. To depict the long term change in temperature and precipitation, annual data are then compared to a 20th-century average (1901-2000). These differences from the long-term average (known as a departure from normal, or anomaly) are then used to produce the climate stripes image. For more information on anomalies, please refer to this FAQ page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has projections of VAR in decadal increments from 1950 to 2100 and for three Shared Socioeconomic Pathways (SSPs). The variables included are:Annual total precipitation (inches) Annual highest precipitation total for a single day (inches) Annual highest precipitation total over a 5-day period (inches) Annual highest precipitation total over a 10-day period (inches) Annual total precipitation for all days exceeding the 90th percentile (inches) Annual total precipitation for all days exceeding the 95th percentile (inches) Annual total precipitation for all days exceeding the 99th percentile (inches) This layer uses data from the LOCA2 and STAR-ESDM downscaled climate models for the Contiguous United States. Further processing by the NOAA Technical Support Unit at CICS-NC and Esri are explained below.For each time and SSP, there are minimum, maximum, and mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available in Understanding CRIS Data. The combination of time and geography is available for a weighted ensemble of 16 climate projections. More details on the models included in the ensemble and the weighting methodologies can be found in CRIS Data Preparation. Other climate variables are available from the CRIS website’s Data Gallery page or can be accessed in the table below. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides projected values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesProjected climate threshold values (e.g. Days Over 90°F) were calculated for each year from 2005 to 2100. Additionally, values are available for the modeled history runs from 1951 - 2005. The modeled history and future projections have been merged into a single time series and averaged by decade.Climate ScenariosClimate models use future scenarios of greenhouse gas concentrations and human activities to project overall change. These different scenarios are called the Shared Socioeconomic Pathways (SSPs). Three different SSPs are available here: 2-4.5, 3-7.0, and 5-8.5 (STAR does not have SSP3-7.0). The number before the dash represents a societal behavior scenario. The number after the dash indicates the amount of radiative forcing (watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but SSP 2-4.5 currently aligns with the international targets of the COP-26 agreement. SSP3-7.0 may be the most likely scenario based on current emission trends. SSP5-8.5 acts as a cautionary tale, providing a worst-case scenario if reductions in greenhouse gasses are not undertaken. Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has projections of VAR in decadal increments from 1950 to 2100 and for three Shared Socioeconomic Pathways (SSPs). The variables included are:Annual total precipitation (inches) Annual highest precipitation total for a single day (inches) Annual highest precipitation total over a 5-day period (inches) Annual highest precipitation total over a 10-day period (inches) Annual total precipitation for all days exceeding the 90th percentile (inches) Annual total precipitation for all days exceeding the 95th percentile (inches) Annual total precipitation for all days exceeding the 99th percentile (inches) This layer uses data from the LOCA2 and STAR-ESDM downscaled climate models for the Contiguous United States. Further processing by the NOAA Technical Support Unit at CICS-NC and Esri are explained below.For each time and SSP, there are minimum, maximum, and mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available in Understanding CRIS Data. The combination of time and geography is available for a weighted ensemble of 16 climate projections. More details on the models included in the ensemble and the weighting methodologies can be found in CRIS Data Preparation. Other climate variables are available from the CRIS website’s Data Gallery page or can be accessed in the table below. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides projected values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesProjected climate threshold values (e.g. Days Over 90°F) were calculated for each year from 2005 to 2100. Additionally, values are available for the modeled history runs from 1951 - 2005. The modeled history and future projections have been merged into a single time series and averaged by decade.Climate ScenariosClimate models use future scenarios of greenhouse gas concentrations and human activities to project overall change. These different scenarios are called the Shared Socioeconomic Pathways (SSPs). Three different SSPs are available here: 2-4.5, 3-7.0, and 5-8.5 (STAR does not have SSP3-7.0). The number before the dash represents a societal behavior scenario. The number after the dash indicates the amount of radiative forcing (watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but SSP 2-4.5 currently aligns with the international targets of the COP-26 agreement. SSP3-7.0 may be the most likely scenario based on current emission trends. SSP5-8.5 acts as a cautionary tale, providing a worst-case scenario if reductions in greenhouse gasses are not undertaken. Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has projections of VAR in decadal increments from 1950 to 2100 and for three Shared Socioeconomic Pathways (SSPs). The variables included are:Annual total precipitation (inches) Annual highest precipitation total for a single day (inches) Annual highest precipitation total over a 5-day period (inches) Annual highest precipitation total over a 10-day period (inches) Annual total precipitation for all days exceeding the 90th percentile (inches) Annual total precipitation for all days exceeding the 95th percentile (inches) Annual total precipitation for all days exceeding the 99th percentile (inches) This layer uses data from the LOCA2 and STAR-ESDM downscaled climate models for the Contiguous United States. Further processing by the NOAA Technical Support Unit at CICS-NC and Esri are explained below.For each time and SSP, there are minimum, maximum, and mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available in Understanding CRIS Data. The combination of time and geography is available for a weighted ensemble of 16 climate projections. More details on the models included in the ensemble and the weighting methodologies can be found in CRIS Data Preparation. Other climate variables are available from the CRIS website’s Data Gallery page or can be accessed in the table below. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides projected values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesProjected climate threshold values (e.g. Days Over 90°F) were calculated for each year from 2005 to 2100. Additionally, values are available for the modeled history runs from 1951 - 2005. The modeled history and future projections have been merged into a single time series and averaged by decade.Climate ScenariosClimate models use future scenarios of greenhouse gas concentrations and human activities to project overall change. These different scenarios are called the Shared Socioeconomic Pathways (SSPs). Three different SSPs are available here: 2-4.5, 3-7.0, and 5-8.5 (STAR does not have SSP3-7.0). The number before the dash represents a societal behavior scenario. The number after the dash indicates the amount of radiative forcing (watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but SSP 2-4.5 currently aligns with the international targets of the COP-26 agreement. SSP3-7.0 may be the most likely scenario based on current emission trends. SSP5-8.5 acts as a cautionary tale, providing a worst-case scenario if reductions in greenhouse gasses are not undertaken. Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
Documented in this data release are data used to model and map the probability of arsenic being greater than 10 micrograms per liter in private domestic wells throughout the conterminous United States during drought conditions (Lombard and others, 2020). The model used to predict the probability of arsenic exceeding 10 micrograms per liter in private domestic wells was previously developed and documented by Ayotte and others (2017). Independent variables in the model include groundwater recharge and annual precipitation. In order to assess the impact of drought these variables were altered to simulate drought by reducing the 30-year average annual values by 25 and 50 percent. The impact of drought was also assessed by using groundwater recharge and precipitation values from the year 2012 when approximately 66 percent of the contiguous United States experienced drought. Data sources for groundwater recharge and precipitation for the year 2012 differ from those used in the original model and the drought simulations, therefore a 30-year average climate model was also produced using these new data sources (Thornton and others, 2018; Hay, 2019). Data are documented from the original model, the drought simulations with reduced values of groundwater recharge and precipitation, the year 2012 and the average annual precipitation and groundwater recharge from 1981 - 2010 from the new data sources.
The model input data that were used to make the prediction maps are within a zipped folder (Prediction_Input_Data.zip) that contains 50 files, one for each model predictor variable. These include the predictor variables from the original model as well as the updated precipitation and groundwater recharge variables for the year 2012 and the average annual values based on the years1981 - 2010, and groundwater recharge and precipitation variables that were systematically decreased for drought simulations. The model prediction outputs are within a zipped folder (Prediction_Output_Data.zip) that contains 10 tif-format raster files, one for each of the eight drought simulations, one for the year 2012, and one for the updated average annual precipitation and groundwater recharge variables for 1981 - 2010. A third zipped folder (Change_Prob_Maps.zip) contains 10 tif-raster files that show the change in probability of arsenic exceeding 10 micrograms per liter in private domestic wells based on the drought simulations and the data used for the year 2012.
The EnviroAtlas Climate Scenarios were generated from NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) ensemble averages (the average of over 30 available climate models) for each of the four representative concentration pathways (RCP) for the contiguous U.S. at 30 arc-second (approx. 800 m2) spatial resolution. NEX-DCP30 mean monthly precipitation rate for the 4 RCPs (2.6, 4.5, 6.0, 8.5) were organized by season (Winter, Spring, Summer, and Fall) and annually for the years 2006 ?? 2099. Additionally, mean monthly precipitation rate for the ensemble average of all historic runs is organized similarly for the years 1950 ?? 2005. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
In 2024, Louisiana recorded ***** inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only **** inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of **** inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.