57 datasets found
  1. Data De-identification Software Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data De-identification Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-de-identification-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data De-identification Software Market Outlook



    The global data de-identification software market size was valued at approximately USD 500 million in 2023 and is projected to reach around USD 1.5 billion by 2032, growing at a CAGR of 13.5% during the forecast period. The growth in this market is driven by the increasing need for data privacy and compliance with stringent regulatory requirements across various industries.



    The primary growth factor for the data de-identification software market is the rising awareness and concern regarding data privacy and security. With the advent of big data and the proliferation of digital services, organizations are increasingly recognizing the importance of protecting personal and sensitive information. Data breaches and cyber-attacks have led to significant financial and reputational damages, prompting businesses to invest in advanced data de-identification solutions to mitigate risks. Moreover, regulatory frameworks such as GDPR in Europe, CCPA in California, and HIPAA in the United States mandate strict compliance measures for data privacy, further propelling the demand for these software solutions.



    Another significant driver is the growing adoption of cloud-based services and data analytics. As organizations migrate their data to cloud platforms, the need for robust data protection mechanisms becomes paramount. De-identification software enables companies to anonymize sensitive information before storing it in the cloud, ensuring compliance with data protection regulations and reducing the risk of exposure. Additionally, the rise of data analytics for business intelligence and decision-making necessitates the use of de-identified data to maintain privacy while extracting valuable insights.



    The healthcare sector is particularly noteworthy for its substantial contribution to the market growth. The industry deals with large volumes of sensitive patient information that must be protected from unauthorized access. Data de-identification software plays a crucial role in enabling healthcare providers to share and analyze patient data for research and treatment purposes without compromising privacy. The COVID-19 pandemic has further accelerated the adoption of digital health solutions, increasing the demand for data de-identification tools to ensure compliance with privacy regulations and maintain patient trust.



    Data Masking Technology is becoming increasingly vital as organizations strive to protect sensitive information while maintaining data utility. This technology allows businesses to create a realistic but fictional version of their data, ensuring that sensitive information is not exposed during processes such as software testing, development, and analytics. By substituting sensitive data with anonymized values, data masking technology helps organizations comply with data protection regulations without hindering their operational efficiency. As data privacy concerns continue to rise, the adoption of data masking technology is expected to grow, offering a robust solution for safeguarding sensitive information across various sectors.



    Regionally, North America holds a significant share of the data de-identification software market, driven by the presence of key market players, stringent regulatory requirements, and a high level of digitalization across industries. The Asia Pacific region is expected to witness the fastest growth during the forecast period, attributed to the rapid adoption of digital technologies, increasing awareness of data privacy, and evolving regulatory landscape in countries like China, Japan, and India. Europe also plays a vital role due to the stringent data protection regulations enforced by the GDPR, which mandates rigorous data de-identification practices.



    Component Analysis



    By component, the data de-identification software market is segmented into software and services. The software segment is anticipated to dominate the market, driven by the increasing demand for advanced de-identification tools that can handle large volumes of data efficiently. Organizations are investing in sophisticated software solutions that offer automated and customizable de-identification processes to meet specific compliance requirements. These software solutions often come with features like encryption, tokenization, and data masking, enhancing their appeal to businesses across different sectors.



    <a href="https://dataintelo.com/report/data-masking-

  2. De-identification - anonymization

    • figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco H C Felix (2023). De-identification - anonymization [Dataset]. http://doi.org/10.6084/m9.figshare.3545471.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Authors
    Francisco H C Felix
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    De-identification, anonymization, pseudoanonymization, re-identificationNational Institute of Standards and Technology (NIST) documentation declares that the use of these terms is still unclear. Words de-identification, anonymizatio_ and pseudoanonymization are sometimes interchangeable, sometimes carrying subtle different meanings. To mitigate ambiguity, NIST use definitions from ISO/TS 25237:2008:> de-identification: “general term for any process of removing the association between a set of identifying data and the data subject.” [p. 3] anonymization: “process that removes the association between the identifying dataset and the data subject.” [p. 2] pseudonymization: “particular type of anonymization that both removes the association with a data subject and adds an association between a particular set of characteristics relating to the data subject and one or more pseudonyms.”1 [p. 5]Brazilian portuguese literature largely lacks this terminology, and they are more often used in law or information technology. The utilization of these concepts in health care and research has a specific conceptualization. HIPAA (Health Insurance Portability and Accountability Act), US regulation of health data privacy protection, establishes standards for patient personal information (protected health information - PHI) handling by health care providers (covered entities).

  3. D

    Data De-identification and Pseudonymity Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data De-identification and Pseudonymity Software Report [Dataset]. https://www.marketresearchforecast.com/reports/data-de-identification-and-pseudonymity-software-30730
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data De-identification and Pseudonymization Software market is experiencing robust growth, projected to reach $1941.6 million in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 7.3%. This expansion is driven by increasing regulatory compliance needs (like GDPR and CCPA), heightened concerns regarding data privacy and security breaches, and the burgeoning adoption of cloud-based solutions. The market is segmented by deployment (cloud-based and on-premises) and application (large enterprises and SMEs). Cloud-based solutions are gaining significant traction due to their scalability, cost-effectiveness, and ease of implementation, while large enterprises dominate the application segment due to their greater need for robust data protection strategies and larger budgets. Key market players include established tech giants like IBM and Informatica, alongside specialized providers such as Very Good Security and Anonomatic, indicating a dynamic competitive landscape with both established and emerging players vying for market share. Geographic expansion is also a key driver, with North America currently holding a significant market share, followed by Europe and Asia Pacific. The forecast period (2025-2033) anticipates continued growth fueled by advancements in artificial intelligence and machine learning for enhanced de-identification techniques, and the increasing demand for data anonymization across various sectors like healthcare, finance, and government. The restraining factors, while present, are not expected to significantly hinder the market’s overall growth trajectory. These limitations might include the complexity of implementing robust de-identification solutions, the potential for re-identification risks despite advanced techniques, and the ongoing evolution of privacy regulations necessitating continuous adaptation of software capabilities. However, ongoing innovation and technological advancements are anticipated to mitigate these challenges. The continuous development of more sophisticated algorithms and solutions addresses re-identification vulnerabilities, while proactive industry collaboration and regulatory guidance aim to streamline implementation processes, ultimately fostering continued market expansion. The increasing adoption of data anonymization across diverse sectors, coupled with the expanding global digital landscape and related data protection needs, suggests a positive outlook for sustained market growth throughout the forecast period.

  4. Data De-Identification or Pseudonymity Software Market Report | Global...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data De-Identification or Pseudonymity Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-de-identification-or-pseudonymity-software-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data De-Identification or Pseudonymity Software Market Outlook



    As of 2023, the global Data De-Identification or Pseudonymity Software market is valued at approximately USD 1.5 billion and is projected to grow at a robust CAGR of 18% from 2024 to 2032, driven by increasing data privacy concerns and stringent regulatory requirements.



    The growth of the Data De-Identification or Pseudonymity Software market is primarily fueled by the exponential increase in data generation across industries. With the advent of IoT, AI, and digital transformation strategies, the volume of data generated has seen an unprecedented spike. Organizations are now more aware of the need to protect sensitive information to comply with global data privacy regulations such as GDPR in Europe and CCPA in California. The need to ensure that personal data is anonymized or de-identified before analysis or sharing has escalated, pushing the demand for these software solutions.



    Another significant growth factor is the rising number of cyber-attacks and data breaches. As data becomes more valuable, it also becomes a prime target for cybercriminals. In response, companies are investing heavily in data privacy and security measures, including de-identification and pseudonymity solutions, to mitigate risks associated with data breaches. This trend is more prevalent in sectors dealing with highly sensitive information like healthcare, finance, and government. Ensuring that data remains secure and private while being useful for analytics is a key driver for the adoption of these technologies.



    Moreover, the evolution of Big Data analytics and cloud computing is also spurring growth in this market. As organizations move their operations to the cloud and leverage big data for decision-making, the importance of maintaining data privacy while utilizing large datasets for analytics cannot be overstated. Cloud-based de-identification solutions offer scalability, flexibility, and cost-effectiveness, making them increasingly popular among enterprises of all sizes. This shift towards cloud deployments is expected to further boost market growth.



    Regionally, North America holds the largest market share due to its advanced technological infrastructure and stringent data protection laws. The presence of major technology companies and a high rate of adoption of advanced solutions in the U.S. and Canada contribute significantly to regional market growth. Europe follows closely, driven by rigorous GDPR compliance requirements. The Asia Pacific region is anticipated to witness the fastest growth, attributed to the increasing digitization and growing awareness about data privacy in countries like India and China.



    As organizations increasingly seek to protect their sensitive data, the concept of Data Protection on Demand is gaining traction. This model allows businesses to access data protection services as and when needed, providing flexibility and scalability. By leveraging cloud-based platforms, companies can implement robust data protection measures without the need for significant upfront investments in infrastructure. This approach not only ensures compliance with data privacy regulations but also offers a cost-effective solution for managing data security. As the demand for on-demand services continues to rise, Data Protection on Demand is poised to become a critical component of data management strategies across various industries.



    Component Analysis



    The Data De-Identification or Pseudonymity Software market by component is segmented into software and services. The software segment dominates the market, driven by the increasing need for automated solutions that ensure data privacy. These software solutions come with a variety of tools and features designed to anonymize or pseudonymize data efficiently, making them essential for organizations managing large volumes of sensitive information. The software market is expanding rapidly, with new innovations and improvements constantly being introduced to enhance functionality and user experience.



    The services segment, though smaller compared to software, plays a crucial role in the market. Services include consulting, implementation, and maintenance, which are essential for the successful deployment and operation of de-identification software. These services help organizations tailor the software to their specific needs, ensuring compliance with regional and industry-specific data protection regulations.

  5. D

    Data De-Identification Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data De-Identification Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/data-de-identification-tools-529560
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The market for data de-identification tools is experiencing robust growth, driven by increasing regulatory scrutiny around data privacy (like GDPR and CCPA), the rising volume of sensitive data being generated and processed, and a growing awareness of the potential risks associated with data breaches. The market, estimated at $2 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 15% between 2025 and 2033, reaching an estimated $7 billion by 2033. This expansion is fueled by the adoption of advanced techniques like differential privacy and homomorphic encryption, allowing organizations to derive insights from data while safeguarding individual privacy. Key trends include the increasing demand for integrated solutions that combine data de-identification with other data security measures, a shift towards cloud-based solutions for enhanced scalability and accessibility, and the growing adoption of AI and machine learning for automating data de-identification processes. However, challenges remain, including the complexity of implementing de-identification techniques, concerns around the accuracy and effectiveness of these tools, and the ongoing evolution of privacy regulations requiring continuous adaptation. The market is highly competitive, with a range of established players and emerging startups vying for market share. This competitive landscape encompasses both large multinational corporations like IBM and Salesforce, offering comprehensive data management and security platforms, and smaller, more specialized companies such as PrivacyOne and Very Good Security, focusing on specific de-identification techniques and data protection solutions. The diverse range of solutions reflects the nuanced requirements across different industries and data types. The segment breakdown likely includes solutions tailored to healthcare, finance, and other sectors with stringent privacy regulations. Geographic distribution will likely show stronger market penetration in regions with robust data protection regulations and a strong emphasis on digital transformation, such as North America and Europe. Continued innovation in areas such as federated learning and privacy-enhancing technologies will further shape the trajectory of this rapidly evolving market.

  6. D

    Data De-identification or Pseudonymity Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data De-identification or Pseudonymity Software Report [Dataset]. https://www.archivemarketresearch.com/reports/data-de-identification-or-pseudonymity-software-53490
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for data de-identification and pseudonymity software is experiencing robust growth, driven by increasing regulatory compliance needs (like GDPR and CCPA), rising concerns about data privacy breaches, and the expanding adoption of cloud-based solutions. The market size in 2025 is estimated at $549.9 million. While the specific CAGR is not provided, considering the strong market drivers and the projected growth in related technologies like data anonymization and privacy-enhancing technologies, a conservative estimate of the CAGR for the forecast period (2025-2033) would be around 15%. This would place the market value at approximately $1.8 billion by 2033. The cloud-based segment is anticipated to dominate the market due to its scalability, cost-effectiveness, and ease of deployment. Enterprise applications currently hold a larger market share compared to individual applications, but the individual segment is projected to experience faster growth as individuals become more aware of data privacy and seek personalized solutions. North America and Europe are currently the leading regions, however, significant growth opportunities exist in Asia-Pacific and other emerging markets as data privacy regulations expand globally and digital transformation accelerates. The market faces some restraints, such as the high cost of implementation for some solutions and the complexity of integrating these technologies into existing IT infrastructure. However, these challenges are expected to lessen with technological advancements and increasing vendor competition. The competitive landscape is characterized by a mix of established players and emerging startups. Key vendors include TokenEx, Privacy Analytics, and others, offering a diverse range of solutions catering to various customer needs and industry verticals. Continued innovation in areas like AI-powered data masking and federated learning is expected to further shape the market, enhancing the effectiveness and efficiency of data de-identification and pseudonymity processes. The ongoing focus on robust security measures alongside anonymization capabilities will be crucial for the future growth and adoption of this vital technology.

  7. D

    Data De-identification or Pseudonymity Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data De-identification or Pseudonymity Software Report [Dataset]. https://www.datainsightsmarket.com/reports/data-de-identification-or-pseudonymity-software-1974625
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data De-identification and Pseudonymization Software market is experiencing robust growth, driven by increasing regulatory compliance needs (like GDPR and CCPA), heightened data privacy concerns among consumers, and the expanding adoption of cloud computing and big data analytics. The market's size in 2025 is estimated at $2.5 billion, projecting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is fueled by several key trends, including the rising sophistication of data anonymization techniques, the increasing demand for advanced data security solutions, and the growing adoption of these technologies across various sectors like healthcare, finance, and government. Major players are continually innovating, developing solutions that offer enhanced functionality, improved scalability, and seamless integration with existing data management systems. However, challenges remain, such as the complexity of implementing these solutions, the potential for re-identification of anonymized data, and the ongoing evolution of privacy regulations, necessitating continuous adaptation and updates. The market segmentation reveals strong demand across various sectors. Healthcare, due to stringent HIPAA regulations and the sensitive nature of patient data, represents a significant market segment. Similarly, the financial services industry, with its focus on customer data protection and regulatory compliance, is a key driver of growth. The geographical distribution shows a strong presence in North America and Europe, reflecting the early adoption of data privacy regulations and the well-established data security infrastructure in these regions. However, emerging markets in Asia-Pacific and Latin America present significant growth opportunities as data privacy regulations mature and awareness increases. Competitive pressures are moderate, with established players like TokenEx and Thales Group competing alongside innovative startups. The forecast period (2025-2033) anticipates substantial expansion, driven by the continued emphasis on data privacy and the expanding adoption of advanced data anonymization techniques.

  8. D

    Data De-identification or Pseudonymity Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data De-identification or Pseudonymity Software Report [Dataset]. https://www.archivemarketresearch.com/reports/data-de-identification-or-pseudonymity-software-53461
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for data de-identification and pseudonymity software is experiencing robust growth, projected to reach $414.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 4.1% from 2025 to 2033. This expansion is fueled by increasing regulatory pressures like GDPR and CCPA, demanding stringent data privacy measures across various sectors. The rising adoption of cloud-based solutions and the growing need for secure data sharing among enterprises are significant drivers. Furthermore, advancements in machine learning and artificial intelligence are enhancing the accuracy and efficiency of data de-identification techniques, further fueling market growth. The market is segmented by deployment type (cloud-based and on-premises) and application (individual, enterprise, and others). The cloud-based segment is expected to dominate due to its scalability, cost-effectiveness, and ease of implementation. Enterprise applications currently hold the largest market share, driven by the need for robust data protection in large organizations handling sensitive customer information. Key players like TokenEx, Privacy Analytics, and Thales Group are actively shaping the market through continuous innovation and strategic partnerships. Geographic expansion is also a key trend, with North America and Europe currently leading the market, followed by the Asia-Pacific region witnessing significant growth potential. The continued growth trajectory is anticipated to be influenced by several factors. The increasing volume of data generated across industries will necessitate more sophisticated de-identification solutions. Moreover, the evolving threat landscape and the growing awareness of data breaches will propel demand for robust and reliable data privacy technologies. While factors such as initial investment costs and the complexity of implementing these solutions may pose some challenges, the long-term benefits of improved data security and regulatory compliance far outweigh these limitations. The market is expected to witness further consolidation with mergers and acquisitions, and the emergence of innovative solutions leveraging advanced technologies. This will ultimately lead to a more mature and comprehensive market for data de-identification and pseudonymization software.

  9. D

    Data De-identification and Pseudonymity Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data De-identification and Pseudonymity Software Report [Dataset]. https://www.datainsightsmarket.com/reports/data-de-identification-and-pseudonymity-software-1433228
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data De-identification and Pseudonymization Software market is experiencing robust growth, driven by increasing concerns over data privacy regulations like GDPR and CCPA, and a rising need to protect sensitive customer information. The market, estimated at $2 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated market value of $6 billion by 2033. This growth is fueled by the expanding adoption of cloud-based solutions offering scalability and cost-effectiveness, coupled with the growing prevalence of data breaches and the associated financial and reputational risks. Large enterprises are currently the dominant segment, but the increasing digitalization of SMEs is expected to drive significant growth in this segment over the forecast period. Technological advancements in anonymization techniques, particularly those using AI and machine learning, are further enhancing the market’s potential. However, the market faces challenges. High implementation costs and the complexity associated with integrating these solutions into existing IT infrastructure can act as restraints for smaller organizations. Ensuring the complete and irreversible anonymization of data remains a crucial technical hurdle, along with the ongoing evolution of privacy regulations and the need for constant adaptation of software solutions to comply. Despite these challenges, the market’s trajectory remains positive, driven by strong regulatory pressure and the imperative for businesses to protect their data assets and maintain customer trust. The diverse range of solutions offered by players like IBM, Thales Group, and smaller specialized firms indicates a maturing and competitive market landscape. The increasing demand for data-driven insights while maintaining privacy is expected to continuously drive innovation and growth within this crucial sector.

  10. v

    Global Data De-Identification Or Pseudonymity Software Market Size By...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2025). Global Data De-Identification Or Pseudonymity Software Market Size By Deployment Mode (On-Premises, Cloud-Based), By Application (Data Masking, Tokenization, Data Anonymization, Data Pseudonymization, Data Redaction), By End-User (Healthcare And Life Sciences, BFSI, Government And Public Sector, IT And Telecom, Retail And E-commerce), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/data-deidentification-or-pseudonymity-software-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset authored and provided by
    Verified Market Research
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Data De-Identification Or Pseudonymity Software Market size was valued at USD 431.70 Million in 2024 and is projected to reach USD 595.38 Million by 2032, growing at a CAGR of 4.10% during the forecast period 2026 to 2032.The market drivers for the Data De-Identification Or Pseudonymity Software Market can be influenced by various factors. These may include:Increasing Data Privacy Regulations Worldwide: Strict data privacy laws such as GDPR and CCPA enforce hefty fines exceeding €1 Billion from 2018 to 2023. Compliance requires adoption of data de-identification tools to protect personal data and avoid regulatory penalties.Growing Number of Data Breaches and Cyberattacks: Over 45 Million healthcare records were exposed between 2019 and 2023, highlighting risks to sensitive data. Data de-identification is essential to minimize the impact of breaches and protect individuals’ privacy in affected sectors.

  11. D

    Data De-identification & Pseudonymity Software Market Report | Global...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data De-identification & Pseudonymity Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-de-identification-pseudonymity-software-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data De-identification & Pseudonymity Software Market Outlook




    The global Data De-identification & Pseudonymity Software Market is projected to reach USD 3.5 billion by 2032, growing at a CAGR of 15.2% from 2024 to 2032. The rise in data privacy regulations and the increasing need for securing sensitive information are key factors driving this growth.




    The accelerating pace of digital transformation across various industries has led to an unprecedented surge in data generation. This voluminous data often contains sensitive information that needs robust protection. The growing awareness regarding data privacy and stringent regulations like GDPR in Europe, CCPA in California, and other data protection laws worldwide are compelling organizations to adopt advanced data de-identification and pseudonymity software. These solutions ensure that sensitive data is anonymized or pseudonymized, thus mitigating the risk of data breaches and ensuring compliance with regulations. Consequently, the adoption of data de-identification and pseudonymity software is rapidly increasing.




    Another significant growth factor is the increased focus on data security by industries such as healthcare, finance, and government. In healthcare, the protection of patient data is paramount, making the industry a significant consumer of de-identification software. Similarly, in the finance sector, protecting customer information is crucial to maintain trust and comply with regulatory requirements. Government agencies dealing with citizen data are also increasingly investing in these technologies to prevent unauthorized access and misuse of sensitive information. The demand for data de-identification and pseudonymity software is thus witnessing a steady rise across these critical sectors.




    Technological advancements and innovation in data security solutions are further propelling market growth. The integration of artificial intelligence and machine learning into de-identification and pseudonymity software has enhanced their effectiveness and efficiency. These advanced technologies enable more accurate and faster processing of large datasets, thereby offering robust data protection. Additionally, the rise of cloud computing and the increasing adoption of cloud-based solutions provide scalable and cost-effective options for organizations, further driving the market.



    In this context, the role of Identity Information Protection Service becomes increasingly crucial. As organizations strive to safeguard sensitive data, these services provide an essential layer of security by ensuring that identity-related information is protected from unauthorized access and misuse. Identity Information Protection Service helps organizations comply with data privacy regulations by offering robust solutions that secure personal identifiers, thus reducing the risk of identity theft and data breaches. By integrating these services, companies can enhance their data protection strategies, ensuring that identity information remains confidential and secure across various platforms and applications.




    Regionally, North America holds the largest market share, driven by stringent data protection regulations and high adoption rates of advanced technologies. Europe follows, with significant contributions from countries like Germany, the UK, and France, driven by GDPR compliance requirements. The Asia Pacific region is expected to witness the highest growth rate due to the rapid digitalization of economies like China and India, coupled with increasing awareness about data privacy. Latin America and the Middle East & Africa regions are also showing promising growth, albeit from a smaller base.



    Component Analysis




    The Data De-identification & Pseudonymity Software Market by component is segmented into software and services. The software segment includes standalone software solutions designed to de-identify or pseudonymize data. This segment is witnessing substantial growth due to the increasing demand for automated and scalable data protection solutions. The software solutions are enhanced with advanced algorithms and AI capabilities, providing accurate de-identification and pseudonymization of large datasets, which is crucial for organizations dealing with massive amounts of sensitive data.




  12. 802.11 Managemement frames from a public location

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Vermunicht; Benjamin Vermunicht (2025). 802.11 Managemement frames from a public location [Dataset]. http://doi.org/10.5281/zenodo.8003772
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin Vermunicht; Benjamin Vermunicht
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    About

    The following datasets were captured at a busy Belgian train station between 9pm and 10pm, it contains all 802.11 management frames that were captured. both datasets were captured with approximately 20 minutes between then.

    Both datasets are represented by a pcap and CSV file. The CSV file contains the frame type, timestamps, signal strength, SSID and MAC addresses for every frame. In the pcap file, all generic 802.11 elements were removed for anonymization purposes.

    Anonymization

    All frames were anonymized by removing identifying information or renaming identifiers. Concretely, the following transformations were applied to both datasets:

    • All MAC addresses were renamed (e.g. 00:00:00:00:00:01)
    • All SSID's were renamed (e.g. NETWORK_1)
    • All generec 802.11 elements were removed from the pcap

    In the pcap file, anonymization actions could lead to "corrupted" frames because length tags do not correspond with the actual data. However, the file and its frames are still readable in packet analyzing tools such as Wireshark or Scapy.

    The script which was used to anonymize is available in the dataset.

    Data

    Specifications for the datasets
    N/oDataset 1dataset 2
    Frames3630660984
    Beacon frames1969327983
    Request frames7981580
    Response frames1581531421
    Identified Wi-Fi Networks5470
    Identified MAC addresses20922705
    Identified Wireless devices128186
    Capturetime480s422s

    Dataset contents

    The two datasets are stored in the directories `1/` and `2/`. Each directory contains:

    • `capture-X.pcap`: an anonymized version of the original capture
    • `capture-X.csv`: content of each captured frame (timestamp, MAC address...) saved as a CSV file

    `anonymization.py` is the script which was used to remove identifiers.

    `README.md` contains the documentation about the datasets

    License

    Copyright 2022-2023 Benjamin Vermunicht, Beat Signer, Maxim Van de Wynckel, Vrije Universiteit Brussel

    Permission is hereby granted, free of charge, to any person obtaining a copy of this dataset and associated documentation files (the “Dataset”), to deal in the Dataset without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Dataset, and to permit persons to whom the Dataset is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all copies or substantial portions that make use of the Dataset.

    THE DATASET IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DATASET OR THE USE OR OTHER DEALINGS IN THE DATASET.

  13. h

    Anonymize or Synthesize? – Privacy-Preserving Methods for Heart Failure...

    • heidata.uni-heidelberg.de
    pdf, tsv, txt
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Ingo Johann; Tim Ingo Johann; Karen Otte; Karen Otte; Fabian Prasser; Fabian Prasser; Christoph Dieterich; Christoph Dieterich (2024). Anonymize or Synthesize? – Privacy-Preserving Methods for Heart Failure Score Analytics [data] [Dataset]. http://doi.org/10.11588/DATA/MXM0Q2
    Explore at:
    txt(3421), tsv(191831), tsv(106632), tsv(286102), tsv(107100), tsv(190296), tsv(197975), pdf(640128)Available download formats
    Dataset updated
    Nov 20, 2024
    Dataset provided by
    heiDATA
    Authors
    Tim Ingo Johann; Tim Ingo Johann; Karen Otte; Karen Otte; Fabian Prasser; Fabian Prasser; Christoph Dieterich; Christoph Dieterich
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11588/DATA/MXM0Q2https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11588/DATA/MXM0Q2

    Description

    In the publication [1] we implemented anonymization and synthetization techniques for a structured data set, which was collected during the HiGHmed Use Case Cardiology study [2]. We employed the data anonymization tool ARX [3] and the data synthetization framework ASyH [4] individually and in combination. We evaluated the utility and shortcomings of the different approaches by statistical analyses and privacy risk assessments. Data utility was assessed by computing two heart failure risk scores (Barcelona BioHF [5] and MAGGIC [6]) on the protected data sets. We observed only minimal deviations to scores from the original data set. Additionally, we performed a re-identification risk analysis and found only minor residual risks for common types of privacy threats. We could demonstrate that anonymization and synthetization methods protect privacy while retaining data utility for heart failure risk assessment. Both approaches and a combination thereof introduce only minimal deviations from the original data set over all features. While data synthesis techniques produce any number of new records, data anonymization techniques offer more formal privacy guarantees. Consequently, data synthesis on anonymized data further enhances privacy protection with little impacting data utility. We hereby share all generated data sets with the scientific community through a use and access agreement. [1] Johann TI, Otte K, Prasser F, Dieterich C: Anonymize or synthesize? Privacy-preserving methods for heart failure score analytics. Eur Heart J 2024;. doi://10.1093/ehjdh/ztae083 [2] Sommer KK, Amr A, Bavendiek, Beierle F, Brunecker P, Dathe H et al. Structured, harmonized, and interoperable integration of clinical routine data to compute heart failure risk scores. Life (Basel) 2022;12:749. [3] Prasser F, Eicher J, Spengler H, Bild R, Kuhn KA. Flexible data anonymization using ARX—current status and challenges ahead. Softw Pract Exper 2020;50:1277–1304. [4] Johann TI, Wilhelmi H. ASyH—anonymous synthesizer for health data, GitHub, 2023. Available at: https://github.com/dieterich-lab/ASyH. [5] Lupón J, de Antonio M, Vila J, Peñafiel J, Galán A, Zamora E, et al. Development of a novel heart failure risk tool: the Barcelona bio-heart failure risk calculator (BCN Bio-HF calculator). PLoS One 2014;9:e85466. [6] Pocock SJ, Ariti CA, McMurray JJV, Maggioni A, Køber L, Squire IB, et al. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J 2013;34:1404–1413.

  14. Healthcare Data Anonymization Services Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Healthcare Data Anonymization Services Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/healthcare-data-anonymization-services-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Healthcare Data Anonymization Services Market Outlook



    According to our latest research, the global healthcare data anonymization services market size reached USD 1.42 billion in 2024, reflecting a robust expansion driven by increasing regulatory demands and heightened focus on patient privacy. The market is projected to grow at a CAGR of 15.8% from 2025 to 2033, with the total market value expected to reach USD 5.44 billion by 2033. This impressive growth trajectory is underpinned by the rising adoption of digital health solutions, stringent data protection laws, and the ongoing digitalization of healthcare records worldwide.




    The primary growth factor fueling the healthcare data anonymization services market is the proliferation of electronic health records (EHRs) and the expanding use of big data analytics in healthcare. As healthcare providers and organizations increasingly leverage advanced analytics for improving patient outcomes, there is a corresponding surge in data generation. However, these vast datasets often contain sensitive patient information, making data anonymization essential to ensure compliance with regulations such as HIPAA, GDPR, and other regional privacy laws. The increasing frequency of data breaches and cyberattacks has further highlighted the importance of robust anonymization services, prompting healthcare organizations to prioritize investments in data privacy and security solutions. As a result, demand for both software and service-based anonymization solutions continues to rise, contributing significantly to market growth.




    Another key driver for the healthcare data anonymization services market is the growing emphasis on research and clinical trials, which require the sharing and analysis of large volumes of patient data. Pharmaceutical and biotechnology companies, as well as research organizations, are increasingly collaborating across borders, necessitating the anonymization of datasets to protect patient identities and comply with international data protection standards. The adoption of cloud-based healthcare solutions has also facilitated the secure and efficient sharing of anonymized data, supporting advancements in personalized medicine and population health management. As organizations seek to balance innovation with compliance, the demand for advanced anonymization technologies that offer high accuracy and scalability is expected to accelerate further.




    Technological advancements in artificial intelligence (AI) and machine learning (ML) are also shaping the future of the healthcare data anonymization services market. These technologies are enabling more sophisticated and automated anonymization processes, reducing the risk of re-identification while maintaining data utility for research and analytics. The integration of AI-driven tools into anonymization workflows is helping organizations streamline operations, minimize human error, and achieve greater compliance with evolving regulatory requirements. Additionally, the increasing availability of customizable and interoperable anonymization solutions is making it easier for healthcare organizations of all sizes to adopt and scale these services, thereby broadening the market’s reach and impact.




    From a regional perspective, North America continues to dominate the healthcare data anonymization services market, accounting for the largest share in 2024. This leadership position is attributed to the presence of advanced healthcare infrastructure, widespread adoption of EHRs, and strict regulatory frameworks governing patient data privacy. Europe follows closely, driven by the enforcement of the General Data Protection Regulation (GDPR) and a strong culture of data protection. The Asia Pacific region is witnessing the fastest growth, propelled by increasing healthcare digitalization, government initiatives to modernize healthcare systems, and rising awareness of data privacy among patients and providers. Latin America and the Middle East & Africa are also experiencing steady growth, albeit from a smaller base, as healthcare organizations in these regions begin to prioritize data security and compliance.



    &

  15. D

    Data Obfuscation Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Obfuscation Software Report [Dataset]. https://www.datainsightsmarket.com/reports/data-obfuscation-software-1453600
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Obfuscation Software market is experiencing robust growth, driven by increasing concerns around data privacy regulations (like GDPR and CCPA) and the rising need to protect sensitive data during development, testing, and collaboration. The market, currently estimated at $2 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated market value of approximately $6 billion by 2033. This expansion is fueled by the adoption of cloud-based solutions offering scalability and ease of deployment, along with a growing preference for large enterprises and SMEs to leverage data masking techniques for compliance and security purposes. Key trends include the increasing integration of AI and machine learning for more sophisticated data obfuscation techniques, and the expansion into new sectors such as healthcare and finance, where sensitive data is paramount. However, factors like the complexity of implementing these solutions and the potential for reduced data usability due to excessive obfuscation act as restraints to market growth. The market is segmented by application (Large Enterprises, SMEs) and type (On-premises, Cloud-based), with the cloud-based segment expected to dominate due to its flexibility and cost-effectiveness. North America currently holds the largest market share, followed by Europe, driven by stringent data protection laws and a high concentration of technology companies. Asia Pacific is anticipated to exhibit significant growth in the forecast period due to increasing digitalization and rising data security concerns in emerging economies. The competitive landscape is characterized by a mix of established players like Oracle, IBM, and Informatica, and smaller, specialized vendors. These companies are constantly innovating to offer advanced features and enhance their solutions' ease of use. The market's future hinges on the continued evolution of data privacy regulations, advancements in data anonymization techniques, and the growing adoption of data sharing practices across different organizations. The ability of vendors to offer flexible, scalable, and user-friendly solutions will be key to their success in this rapidly expanding market.

  16. Medical Imaging De-Identification Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Medical Imaging De-Identification Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/medical-imaging-de-identification-software-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Medical Imaging De-Identification Software Market Outlook




    According to our latest research, the global medical imaging de-identification software market size reached USD 315 million in 2024, driven by the increasing adoption of digital healthcare solutions and stringent regulatory requirements for patient data privacy. The market is expected to grow at a robust CAGR of 13.2% during the forecast period, reaching approximately USD 858 million by 2033. The primary growth factor fueling this expansion is the rising volume of medical imaging data and the escalating need to ensure compliance with data protection laws such as HIPAA, GDPR, and other regional regulations.




    The growth trajectory of the medical imaging de-identification software market is underpinned by the exponential increase in digital imaging procedures across healthcare facilities worldwide. As advanced imaging modalities like MRI, CT, and PET scans become standard in diagnostic workflows, the volume of data generated has surged. This data often contains sensitive patient information, making it imperative for healthcare organizations to adopt robust de-identification solutions. The proliferation of health information exchanges and the increasing emphasis on interoperability have further heightened the need for secure and compliant data sharing. These factors collectively foster a conducive environment for the adoption of de-identification software, as organizations seek to balance data utility with stringent privacy requirements.




    Another major driver is the evolving regulatory landscape that mandates strict adherence to patient confidentiality and data protection standards. Regulatory frameworks such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, the General Data Protection Regulation (GDPR) in Europe, and similar regulations in Asia Pacific and other regions are compelling healthcare providers and research institutions to implement advanced de-identification solutions. These regulations impose hefty penalties for non-compliance, further incentivizing investments in software that can automate and streamline the de-identification process. Moreover, the growing trend of collaborative research and data sharing among healthcare entities necessitates reliable de-identification tools to facilitate secure and lawful data exchange.




    Technological advancements in artificial intelligence and machine learning are also playing a pivotal role in shaping the medical imaging de-identification software market. Modern solutions leverage AI-driven algorithms to enhance the accuracy and efficiency of de-identification processes, reducing the risk of inadvertent data leaks. These innovations are particularly valuable in large-scale research projects, where massive datasets must be anonymized rapidly and without compromising data integrity. Furthermore, the integration of de-identification software with existing healthcare IT infrastructure, such as PACS and EHR systems, is becoming increasingly seamless, making adoption easier for end-users. This technological evolution is expected to drive further market growth over the next decade.




    From a regional perspective, North America currently dominates the medical imaging de-identification software market, accounting for the largest share in 2024. The region’s leadership is attributed to the presence of advanced healthcare infrastructure, high adoption rates of digital health technologies, and stringent regulatory frameworks. Europe follows closely, propelled by GDPR compliance and increasing investments in healthcare IT. The Asia Pacific region is experiencing the fastest growth, fueled by expanding healthcare access, rapid digitalization, and rising awareness of data privacy. Latin America and the Middle East & Africa are also witnessing gradual adoption, supported by ongoing healthcare modernization initiatives and regulatory developments.





    Component Analysis




    The component segment of the medical imaging de-i

  17. p

    CARMEN-I: A resource of anonymized electronic health records in Spanish and...

    • physionet.org
    Updated Apr 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eulalia Farre Maduell; Salvador Lima-Lopez; Santiago Andres Frid; Artur Conesa; Elisa Asensio; Antonio Lopez-Rueda; Helena Arino; Elena Calvo; Maria Jesús Bertran; Maria Angeles Marcos; Montserrat Nofre Maiz; Laura Tañá Velasco; Antonia Marti; Ricardo Farreres; Xavier Pastor; Xavier Borrat Frigola; Martin Krallinger (2024). CARMEN-I: A resource of anonymized electronic health records in Spanish and Catalan for training and testing NLP tools [Dataset]. http://doi.org/10.13026/x7ed-9r91
    Explore at:
    Dataset updated
    Apr 20, 2024
    Authors
    Eulalia Farre Maduell; Salvador Lima-Lopez; Santiago Andres Frid; Artur Conesa; Elisa Asensio; Antonio Lopez-Rueda; Helena Arino; Elena Calvo; Maria Jesús Bertran; Maria Angeles Marcos; Montserrat Nofre Maiz; Laura Tañá Velasco; Antonia Marti; Ricardo Farreres; Xavier Pastor; Xavier Borrat Frigola; Martin Krallinger
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    The CARMEN-I corpus comprises 2,000 clinical records, encompassing discharge letters, referrals, and radiology reports from Hospital Clínic of Barcelona between March 2020 and March 2022. These reports, primarily in Spanish with some Catalan sections, cover COVID-19 patients with diverse comorbidities like kidney failure, cardiovascular diseases, malignancies, and immunosuppression. The corpus underwent thorough anonymization, validation, and expert annotation, replacing sensitive data with synthetic equivalents. A subset of the corpus features annotations of medical concepts by specialists, encompassing symptoms, diseases, procedures, medications, species, and humans (including family members). CARMEN-I serves as a valuable resource for training and assessing clinical NLP techniques and language models, aiding tasks like de-identification, concept detection, linguistic modifier extraction, document classification, and more. It also facilitates training researchers in clinical NLP and is a collaborative effort involving Barcelona Supercomputing Center's NLP4BIA team, Hospital Clínic, and Universitat de Barcelona's CLiC group.

  18. f

    DataSheet_1_Segmentation stability of human head and neck cancer medical...

    • frontiersin.figshare.com
    pdf
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jaakko Sahlsten; Kareem A. Wahid; Enrico Glerean; Joel Jaskari; Mohamed A. Naser; Renjie He; Benjamin H. Kann; Antti Mäkitie; Clifton D. Fuller; Kimmo Kaski (2023). DataSheet_1_Segmentation stability of human head and neck cancer medical images for radiotherapy applications under de-identification conditions: Benchmarking data sharing and artificial intelligence use-cases.pdf [Dataset]. http://doi.org/10.3389/fonc.2023.1120392.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Jaakko Sahlsten; Kareem A. Wahid; Enrico Glerean; Joel Jaskari; Mohamed A. Naser; Renjie He; Benjamin H. Kann; Antti Mäkitie; Clifton D. Fuller; Kimmo Kaski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundDemand for head and neck cancer (HNC) radiotherapy data in algorithmic development has prompted increased image dataset sharing. Medical images must comply with data protection requirements so that re-use is enabled without disclosing patient identifiers. Defacing, i.e., the removal of facial features from images, is often considered a reasonable compromise between data protection and re-usability for neuroimaging data. While defacing tools have been developed by the neuroimaging community, their acceptability for radiotherapy applications have not been explored. Therefore, this study systematically investigated the impact of available defacing algorithms on HNC organs at risk (OARs).MethodsA publicly available dataset of magnetic resonance imaging scans for 55 HNC patients with eight segmented OARs (bilateral submandibular glands, parotid glands, level II neck lymph nodes, level III neck lymph nodes) was utilized. Eight publicly available defacing algorithms were investigated: afni_refacer, DeepDefacer, defacer, fsl_deface, mask_face, mri_deface, pydeface, and quickshear. Using a subset of scans where defacing succeeded (N=29), a 5-fold cross-validation 3D U-net based OAR auto-segmentation model was utilized to perform two main experiments: 1.) comparing original and defaced data for training when evaluated on original data; 2.) using original data for training and comparing the model evaluation on original and defaced data. Models were primarily assessed using the Dice similarity coefficient (DSC).ResultsMost defacing methods were unable to produce any usable images for evaluation, while mask_face, fsl_deface, and pydeface were unable to remove the face for 29%, 18%, and 24% of subjects, respectively. When using the original data for evaluation, the composite OAR DSC was statistically higher (p ≤ 0.05) for the model trained with the original data with a DSC of 0.760 compared to the mask_face, fsl_deface, and pydeface models with DSCs of 0.742, 0.736, and 0.449, respectively. Moreover, the model trained with original data had decreased performance (p ≤ 0.05) when evaluated on the defaced data with DSCs of 0.673, 0.693, and 0.406 for mask_face, fsl_deface, and pydeface, respectively.ConclusionDefacing algorithms may have a significant impact on HNC OAR auto-segmentation model training and testing. This work highlights the need for further development of HNC-specific image anonymization methods.

  19. WholeTraveler Anonymized Data Phase 2

    • osti.gov
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spurlock, C. Anna (2025). WholeTraveler Anonymized Data Phase 2 [Dataset]. https://www.osti.gov/dataexplorer/biblio/dataset/1893136-wholetraveler-anonymized-data-phase
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    National Renewable Energy Laboratory; Pacific Northwest National Laboratory; Idaho National Laboratory
    Authors
    Spurlock, C. Anna
    Description

    Phase 2 of the WholeTraveler study consisted of a global positioning system (GPS) data collection. Phase 2 started immediately after the completion of the Phase 1 survey for any respondent who opted into Phase 2. The raw locational data collected have been processed into identified "trips" and some of those trips into identified "trip chains." Data from Phase 1 and Phase 2 are linked by a unique respondent identifier. Anonymized versions of the Phase 1 and Phase 2 data are both available on Livewire.

  20. D

    Data Masking Industry Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Masking Industry Report [Dataset]. https://www.marketreportanalytics.com/reports/data-masking-industry-89634
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 29, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data masking market, valued at $0.94 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 14.71% from 2025 to 2033. This expansion is fueled by increasing concerns around data privacy regulations like GDPR and CCPA, coupled with the rising adoption of cloud computing and the expanding digital footprint of businesses across various sectors. The demand for robust data security solutions is driving significant investments in data masking technologies, enabling organizations to protect sensitive information during testing, development, and other non-production environments. Key drivers include the need to comply with stringent data privacy regulations, the increasing volume of sensitive data being generated and stored, and the growing adoption of data analytics and machine learning initiatives requiring access to masked data for training and testing purposes. The market is segmented by type (static and dynamic), deployment (cloud and on-premise), and end-user industry (BFSI, healthcare, IT and telecom, retail, government and defense, manufacturing, media and entertainment, and others). The cloud deployment segment is expected to witness significant growth due to its scalability, cost-effectiveness, and ease of access. Among end-user industries, BFSI and healthcare are projected to be major contributors to market growth due to the sensitive nature of the data they handle. The competitive landscape is dynamic, with key players including IBM, Oracle, Informatica, and others constantly innovating and expanding their offerings. Future growth will likely be influenced by advancements in artificial intelligence (AI) and machine learning (ML) for automated masking, as well as the increasing adoption of data masking solutions in emerging economies. The continued evolution of data privacy regulations worldwide will further propel market expansion in the coming years. Recent developments include: August 2022 - IBM released a new update, IBM Cloud Pak Data V4.5.x, of Advanced data masking, extended the capability of data protection and location rules by protecting the data with advanced de-identification techniques. The techniques preserve the data's format and integrity. Because of the high data utility, data users such as data scientists, business analysts, and application developers may generate high-quality insights from protected data., April 2022 - Mage signed a technology partnership agreement with Imperva to provide a data masking alternative to Imperva's Data Security Fabric (DSF) built-in capabilities for de-identifying sensitive data.. Key drivers for this market are: Increase of Organizational Data Volumes. Potential restraints include: Increase of Organizational Data Volumes. Notable trends are: The BFSI Industry to Witness a Significant Growth.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Data De-identification Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-de-identification-software-market
Organization logo

Data De-identification Software Market Report | Global Forecast From 2025 To 2033

Explore at:
csv, pdf, pptxAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Data De-identification Software Market Outlook



The global data de-identification software market size was valued at approximately USD 500 million in 2023 and is projected to reach around USD 1.5 billion by 2032, growing at a CAGR of 13.5% during the forecast period. The growth in this market is driven by the increasing need for data privacy and compliance with stringent regulatory requirements across various industries.



The primary growth factor for the data de-identification software market is the rising awareness and concern regarding data privacy and security. With the advent of big data and the proliferation of digital services, organizations are increasingly recognizing the importance of protecting personal and sensitive information. Data breaches and cyber-attacks have led to significant financial and reputational damages, prompting businesses to invest in advanced data de-identification solutions to mitigate risks. Moreover, regulatory frameworks such as GDPR in Europe, CCPA in California, and HIPAA in the United States mandate strict compliance measures for data privacy, further propelling the demand for these software solutions.



Another significant driver is the growing adoption of cloud-based services and data analytics. As organizations migrate their data to cloud platforms, the need for robust data protection mechanisms becomes paramount. De-identification software enables companies to anonymize sensitive information before storing it in the cloud, ensuring compliance with data protection regulations and reducing the risk of exposure. Additionally, the rise of data analytics for business intelligence and decision-making necessitates the use of de-identified data to maintain privacy while extracting valuable insights.



The healthcare sector is particularly noteworthy for its substantial contribution to the market growth. The industry deals with large volumes of sensitive patient information that must be protected from unauthorized access. Data de-identification software plays a crucial role in enabling healthcare providers to share and analyze patient data for research and treatment purposes without compromising privacy. The COVID-19 pandemic has further accelerated the adoption of digital health solutions, increasing the demand for data de-identification tools to ensure compliance with privacy regulations and maintain patient trust.



Data Masking Technology is becoming increasingly vital as organizations strive to protect sensitive information while maintaining data utility. This technology allows businesses to create a realistic but fictional version of their data, ensuring that sensitive information is not exposed during processes such as software testing, development, and analytics. By substituting sensitive data with anonymized values, data masking technology helps organizations comply with data protection regulations without hindering their operational efficiency. As data privacy concerns continue to rise, the adoption of data masking technology is expected to grow, offering a robust solution for safeguarding sensitive information across various sectors.



Regionally, North America holds a significant share of the data de-identification software market, driven by the presence of key market players, stringent regulatory requirements, and a high level of digitalization across industries. The Asia Pacific region is expected to witness the fastest growth during the forecast period, attributed to the rapid adoption of digital technologies, increasing awareness of data privacy, and evolving regulatory landscape in countries like China, Japan, and India. Europe also plays a vital role due to the stringent data protection regulations enforced by the GDPR, which mandates rigorous data de-identification practices.



Component Analysis



By component, the data de-identification software market is segmented into software and services. The software segment is anticipated to dominate the market, driven by the increasing demand for advanced de-identification tools that can handle large volumes of data efficiently. Organizations are investing in sophisticated software solutions that offer automated and customizable de-identification processes to meet specific compliance requirements. These software solutions often come with features like encryption, tokenization, and data masking, enhancing their appeal to businesses across different sectors.



<a href="https://dataintelo.com/report/data-masking-

Search
Clear search
Close search
Google apps
Main menu