3 datasets found
  1. Z

    Conceptualization of public data ecosystems

    • data.niaid.nih.gov
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin, Lnenicka (2024). Conceptualization of public data ecosystems [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13842001
    Explore at:
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    Anastasija, Nikiforova
    Martin, Lnenicka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data collected during a study "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems" conducted by Martin Lnenicka (University of Hradec Králové, Czech Republic), Anastasija Nikiforova (University of Tartu, Estonia), Mariusz Luterek (University of Warsaw, Warsaw, Poland), Petar Milic (University of Pristina - Kosovska Mitrovica, Serbia), Daniel Rudmark (Swedish National Road and Transport Research Institute, Sweden), Sebastian Neumaier (St. Pölten University of Applied Sciences, Austria), Karlo Kević (University of Zagreb, Croatia), Anneke Zuiderwijk (Delft University of Technology, Delft, the Netherlands), Manuel Pedro Rodríguez Bolívar (University of Granada, Granada, Spain).

    As there is a lack of understanding of the elements that constitute different types of value-adding public data ecosystems and how these elements form and shape the development of these ecosystems over time, which can lead to misguided efforts to develop future public data ecosystems, the aim of the study is: (1) to explore how public data ecosystems have developed over time and (2) to identify the value-adding elements and formative characteristics of public data ecosystems. Using an exploratory retrospective analysis and a deductive approach, we systematically review 148 studies published between 1994 and 2023. Based on the results, this study presents a typology of public data ecosystems and develops a conceptual model of elements and formative characteristics that contribute most to value-adding public data ecosystems, and develops a conceptual model of the evolutionary generation of public data ecosystems represented by six generations called Evolutionary Model of Public Data Ecosystems (EMPDE). Finally, three avenues for a future research agenda are proposed.

    This dataset is being made public both to act as supplementary data for "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems ", Telematics and Informatics*, and its Systematic Literature Review component that informs the study.

    Description of the data in this data set

    PublicDataEcosystem_SLR provides the structure of the protocol

    Spreadsheet#1 provides the list of results after the search over three indexing databases and filtering out irrelevant studies

    Spreadsheets #2 provides the protocol structure.

    Spreadsheets #3 provides the filled protocol for relevant studies.

    The information on each selected study was collected in four categories:(1) descriptive information,(2) approach- and research design- related information,(3) quality-related information,(4) HVD determination-related information

    Descriptive Information

    Article number

    A study number, corresponding to the study number assigned in an Excel worksheet

    Complete reference

    The complete source information to refer to the study (in APA style), including the author(s) of the study, the year in which it was published, the study's title and other source information.

    Year of publication

    The year in which the study was published.

    Journal article / conference paper / book chapter

    The type of the paper, i.e., journal article, conference paper, or book chapter.

    Journal / conference / book

    Journal article, conference, where the paper is published.

    DOI / Website

    A link to the website where the study can be found.

    Number of words

    A number of words of the study.

    Number of citations in Scopus and WoS

    The number of citations of the paper in Scopus and WoS digital libraries.

    Availability in Open Access

    Availability of a study in the Open Access or Free / Full Access.

    Keywords

    Keywords of the paper as indicated by the authors (in the paper).

    Relevance for our study (high / medium / low)

    What is the relevance level of the paper for our study

    Approach- and research design-related information

    Approach- and research design-related information

    Objective / Aim / Goal / Purpose & Research Questions

    The research objective and established RQs.

    Research method (including unit of analysis)

    The methods used to collect data in the study, including the unit of analysis that refers to the country, organisation, or other specific unit that has been analysed such as the number of use-cases or policy documents, number and scope of the SLR etc.

    Study’s contributions

    The study’s contribution as defined by the authors

    Qualitative / quantitative / mixed method

    Whether the study uses a qualitative, quantitative, or mixed methods approach?

    Availability of the underlying research data

    Whether the paper has a reference to the public availability of the underlying research data e.g., transcriptions of interviews, collected data etc., or explains why these data are not openly shared?

    Period under investigation

    Period (or moment) in which the study was conducted (e.g., January 2021-March 2022)

    Use of theory / theoretical concepts / approaches? If yes, specify them

    Does the study mention any theory / theoretical concepts / approaches? If yes, what theory / concepts / approaches? If any theory is mentioned, how is theory used in the study? (e.g., mentioned to explain a certain phenomenon, used as a framework for analysis, tested theory, theory mentioned in the future research section).

    Quality-related information

    Quality concerns

    Whether there are any quality concerns (e.g., limited information about the research methods used)?

    Public Data Ecosystem-related information

    Public data ecosystem definition

    How is the public data ecosystem defined in the paper and any other equivalent term, mostly infrastructure. If an alternative term is used, how is the public data ecosystem called in the paper?

    Public data ecosystem evolution / development

    Does the paper define the evolution of the public data ecosystem? If yes, how is it defined and what factors affect it?

    What constitutes a public data ecosystem?

    What constitutes a public data ecosystem (components & relationships) - their "FORM / OUTPUT" presented in the paper (general description with more detailed answers to further additional questions).

    Components and relationships

    What components does the public data ecosystem consist of and what are the relationships between these components? Alternative names for components - element, construct, concept, item, helix, dimension etc. (detailed description).

    Stakeholders

    What stakeholders (e.g., governments, citizens, businesses, Non-Governmental Organisations (NGOs) etc.) does the public data ecosystem involve?

    Actors and their roles

    What actors does the public data ecosystem involve? What are their roles?

    Data (data types, data dynamism, data categories etc.)

    What data do the public data ecosystem cover (is intended / designed for)? Refer to all data-related aspects, including but not limited to data types, data dynamism (static data, dynamic, real-time data, stream), prevailing data categories / domains / topics etc.

    Processes / activities / dimensions, data lifecycle phases

    What processes, activities, dimensions and data lifecycle phases (e.g., locate, acquire, download, reuse, transform, etc.) does the public data ecosystem involve or refer to?

    Level (if relevant)

    What is the level of the public data ecosystem covered in the paper? (e.g., city, municipal, regional, national (=country), supranational, international).

    Other elements or relationships (if any)

    What other elements or relationships does the public data ecosystem consist of?

    Additional comments

    Additional comments (e.g., what other topics affected the public data ecosystems and their elements, what is expected to affect the public data ecosystems in the future, what were important topics by which the period was characterised etc.).

    New papers

    Does the study refer to any other potentially relevant papers?

    Additional references to potentially relevant papers that were found in the analysed paper (snowballing).

    Format of the file.xls, .csv (for the first spreadsheet only), .docx

    Licenses or restrictionsCC-BY

    For more info, see README.txt

  2. c

    ckanext-datacitation - Extensions - CKAN Ecosystem Catalog

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-datacitation - Extensions - CKAN Ecosystem Catalog [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-datacitation
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The datacitation extension for CKAN aims to facilitate proper data citation practices within the CKAN data catalog ecosystem. By providing tools and features to create and manage citations for datasets, the extension promotes discoverability and acknowledgment of data sources, enhancing the reproducibility and transparency of research and analysis based on these datasets. The available information is limited, but based on the name, the extension likely focuses on generating, displaying, and potentially exporting citation information. Key Features (Assumed based on Extension Name): * Dataset Citation Generation: Likely provides functionality to automatically generate citation strings for datasets based on metadata fields, adhering to common citation formats (e.g., APA, MLA, Chicago). * Citation Metadata Management: Potentially offers tools to manage citation-related metadata within datasets, such as author names, publication dates, and version numbers, which are essential elements for creating accurate citations. * Citation Display on Dataset Pages: It's reasonable to expect that the extension displays the generated citation information prominently on the dataset's display page, facilitating easy access for users. * Citation Export Options: May provide options to export citations in various formats (e.g., BibTeX, RIS) to integrate with reference management software popular among researchers. * Citation Style Customization: Possibly provides configuration options to customize the citation style used for generation, accommodating different disciplinary requirements. Use Cases (Inferred): 1. Research Data Repositories: Data repositories can utilize datacitation to ensure that researchers cite datasets correctly, which is crucial for tracking the impact of data and recognizing the contributions of data creators. 2. Government Data Portals: Government agencies can implement the extension to promote the proper use and attribution of open government datasets, fostering transparency and accountability. Technical Integration: Due to limited information, the integration details are speculative. However, it can be assumed that the datacitation extension likely integrates with CKAN by: * Adding a new plugin or module to CKAN that handles citation generation and display. * Extending the CKAN dataset schema to include citation-related metadata fields. * Potentially providing API endpoints for programmatic access to citation information. Benefits & Impact: The anticipated benefits of the datacitation extension include: * Improved data discoverability and reusability through proper citation practices. * Enhanced research reproducibility and transparency by ensuring that data sources are properly acknowledged. * Increased recognition of data creators and contributors. * Simplified citation management for users of CKAN-based data catalogs. Disclaimer: The above information is largely based on assumptions derived from the extension's name and common data citation practices. The actual features and capabilities of the datacitation extension may vary due to the unavailability of a README file.

  3. e

    Integrating big data with KNIME as an alternative without programming code:...

    • b2find.eudat.eu
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Integrating big data with KNIME as an alternative without programming code: an application to the PATSTAT patent database [Data set] - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/7a7ffa36-376f-57fe-8247-1bff3610f935
    Explore at:
    Dataset updated
    Jul 8, 2024
    Description

    Dataset accompanying the publication "Integrating big data with KNIME as an alternative without programming code: an application to the PATSTAT patent database ". Accessing massive datasets can be challenging for users unfamiliar with programming codes. Combining Konstanz Information Miner (KNIME) and MySQL tools on standard configuration equipment allows for addressing this issue. This research proposal aims to present a methodology that describes the necessary configuration steps in both tools and the required manipulation in KNIME to transmit the information to the MySQL environment for further processing in a database management system (DBMS). In addition, we propose a procedure so that the use of this point-and-click software in research work can gain in reproducibility and, therefore, in credibility in the scientific community. To achieve this, we will use a big database regarding patent applications as a reference, the PATSTAT Global 2023, provided by the European Patent Office (EPO). As well known, patent data can be a valuable source for understanding innovation dynamics and technological trends, whether for studies on companies, sectors, nations or even regions, at aggregated and disaggregated levels. How to cite the database (APA style): Taques, F.H.; Chasco, C. & Taques, F. (2024) Integrating big data with KNIME as an alternative without programming code: an application to the PATSTAT patent database Data set Source: Taques, F.H.; Chasco, C. & Taques, F. (2024) Integrating big data with KNIME as an alternative without programming code: an application to the PATSTAT patent database. Journal of Geographical Systems (doi: 10.1007/s10109-024-00445-0).

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Martin, Lnenicka (2024). Conceptualization of public data ecosystems [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13842001

Conceptualization of public data ecosystems

Explore at:
Dataset updated
Sep 26, 2024
Dataset provided by
Anastasija, Nikiforova
Martin, Lnenicka
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset contains data collected during a study "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems" conducted by Martin Lnenicka (University of Hradec Králové, Czech Republic), Anastasija Nikiforova (University of Tartu, Estonia), Mariusz Luterek (University of Warsaw, Warsaw, Poland), Petar Milic (University of Pristina - Kosovska Mitrovica, Serbia), Daniel Rudmark (Swedish National Road and Transport Research Institute, Sweden), Sebastian Neumaier (St. Pölten University of Applied Sciences, Austria), Karlo Kević (University of Zagreb, Croatia), Anneke Zuiderwijk (Delft University of Technology, Delft, the Netherlands), Manuel Pedro Rodríguez Bolívar (University of Granada, Granada, Spain).

As there is a lack of understanding of the elements that constitute different types of value-adding public data ecosystems and how these elements form and shape the development of these ecosystems over time, which can lead to misguided efforts to develop future public data ecosystems, the aim of the study is: (1) to explore how public data ecosystems have developed over time and (2) to identify the value-adding elements and formative characteristics of public data ecosystems. Using an exploratory retrospective analysis and a deductive approach, we systematically review 148 studies published between 1994 and 2023. Based on the results, this study presents a typology of public data ecosystems and develops a conceptual model of elements and formative characteristics that contribute most to value-adding public data ecosystems, and develops a conceptual model of the evolutionary generation of public data ecosystems represented by six generations called Evolutionary Model of Public Data Ecosystems (EMPDE). Finally, three avenues for a future research agenda are proposed.

This dataset is being made public both to act as supplementary data for "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems ", Telematics and Informatics*, and its Systematic Literature Review component that informs the study.

Description of the data in this data set

PublicDataEcosystem_SLR provides the structure of the protocol

Spreadsheet#1 provides the list of results after the search over three indexing databases and filtering out irrelevant studies

Spreadsheets #2 provides the protocol structure.

Spreadsheets #3 provides the filled protocol for relevant studies.

The information on each selected study was collected in four categories:(1) descriptive information,(2) approach- and research design- related information,(3) quality-related information,(4) HVD determination-related information

Descriptive Information

Article number

A study number, corresponding to the study number assigned in an Excel worksheet

Complete reference

The complete source information to refer to the study (in APA style), including the author(s) of the study, the year in which it was published, the study's title and other source information.

Year of publication

The year in which the study was published.

Journal article / conference paper / book chapter

The type of the paper, i.e., journal article, conference paper, or book chapter.

Journal / conference / book

Journal article, conference, where the paper is published.

DOI / Website

A link to the website where the study can be found.

Number of words

A number of words of the study.

Number of citations in Scopus and WoS

The number of citations of the paper in Scopus and WoS digital libraries.

Availability in Open Access

Availability of a study in the Open Access or Free / Full Access.

Keywords

Keywords of the paper as indicated by the authors (in the paper).

Relevance for our study (high / medium / low)

What is the relevance level of the paper for our study

Approach- and research design-related information

Approach- and research design-related information

Objective / Aim / Goal / Purpose & Research Questions

The research objective and established RQs.

Research method (including unit of analysis)

The methods used to collect data in the study, including the unit of analysis that refers to the country, organisation, or other specific unit that has been analysed such as the number of use-cases or policy documents, number and scope of the SLR etc.

Study’s contributions

The study’s contribution as defined by the authors

Qualitative / quantitative / mixed method

Whether the study uses a qualitative, quantitative, or mixed methods approach?

Availability of the underlying research data

Whether the paper has a reference to the public availability of the underlying research data e.g., transcriptions of interviews, collected data etc., or explains why these data are not openly shared?

Period under investigation

Period (or moment) in which the study was conducted (e.g., January 2021-March 2022)

Use of theory / theoretical concepts / approaches? If yes, specify them

Does the study mention any theory / theoretical concepts / approaches? If yes, what theory / concepts / approaches? If any theory is mentioned, how is theory used in the study? (e.g., mentioned to explain a certain phenomenon, used as a framework for analysis, tested theory, theory mentioned in the future research section).

Quality-related information

Quality concerns

Whether there are any quality concerns (e.g., limited information about the research methods used)?

Public Data Ecosystem-related information

Public data ecosystem definition

How is the public data ecosystem defined in the paper and any other equivalent term, mostly infrastructure. If an alternative term is used, how is the public data ecosystem called in the paper?

Public data ecosystem evolution / development

Does the paper define the evolution of the public data ecosystem? If yes, how is it defined and what factors affect it?

What constitutes a public data ecosystem?

What constitutes a public data ecosystem (components & relationships) - their "FORM / OUTPUT" presented in the paper (general description with more detailed answers to further additional questions).

Components and relationships

What components does the public data ecosystem consist of and what are the relationships between these components? Alternative names for components - element, construct, concept, item, helix, dimension etc. (detailed description).

Stakeholders

What stakeholders (e.g., governments, citizens, businesses, Non-Governmental Organisations (NGOs) etc.) does the public data ecosystem involve?

Actors and their roles

What actors does the public data ecosystem involve? What are their roles?

Data (data types, data dynamism, data categories etc.)

What data do the public data ecosystem cover (is intended / designed for)? Refer to all data-related aspects, including but not limited to data types, data dynamism (static data, dynamic, real-time data, stream), prevailing data categories / domains / topics etc.

Processes / activities / dimensions, data lifecycle phases

What processes, activities, dimensions and data lifecycle phases (e.g., locate, acquire, download, reuse, transform, etc.) does the public data ecosystem involve or refer to?

Level (if relevant)

What is the level of the public data ecosystem covered in the paper? (e.g., city, municipal, regional, national (=country), supranational, international).

Other elements or relationships (if any)

What other elements or relationships does the public data ecosystem consist of?

Additional comments

Additional comments (e.g., what other topics affected the public data ecosystems and their elements, what is expected to affect the public data ecosystems in the future, what were important topics by which the period was characterised etc.).

New papers

Does the study refer to any other potentially relevant papers?

Additional references to potentially relevant papers that were found in the analysed paper (snowballing).

Format of the file.xls, .csv (for the first spreadsheet only), .docx

Licenses or restrictionsCC-BY

For more info, see README.txt

Search
Clear search
Close search
Google apps
Main menu