4 datasets found
  1. L-based spectral clustering scores under diverse settings of affinity...

    • plos.figshare.com
    xls
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bartłomiej Starosta; Mieczysław A. Kłopotek; Sławomir T. Wierzchoń; Dariusz Czerski; Marcin Sydow; Piotr Borkowski (2025). L-based spectral clustering scores under diverse settings of affinity parameter (column names). [Dataset]. http://doi.org/10.1371/journal.pone.0313238.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Bartłomiej Starosta; Mieczysław A. Kłopotek; Sławomir T. Wierzchoń; Dariusz Czerski; Marcin Sydow; Piotr Borkowski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All the metrics used are available in the sklearn package, see the documentation at https://scikit-learn.org/stable/api/sklearn.metrics.html.

  2. 4

    Dataset for 'Identifying Key Drivers of Product Formation in Microbial...

    • data.4tu.nl
    zip
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marika Zegers; Moumita Roy; Ludovic Jourdin, Dataset for 'Identifying Key Drivers of Product Formation in Microbial Electrosynthesis with a Mixed Linear Regression Analysis' [Dataset]. http://doi.org/10.4121/5e840d08-55f6-4daa-a639-048cebcd8266.v1
    Explore at:
    zipAvailable download formats
    Dataset provided by
    4TU.ResearchData
    Authors
    Marika Zegers; Moumita Roy; Ludovic Jourdin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2024 - Dec 1, 2024
    Dataset funded by
    Delft University of Technology
    NWO
    Description

    The analysed data and complete scripts for the permutation tests and mixed linear regression models (MLRMs) used in the paper 'Identifying Key Drivers of Product Formation in Microbial Electrosynthesis with a Mixed Linear Regression Analysis'.

    Python version 3.10.13 with packages numpy, pandas, os, scipy.optimize, scipy.stats, sklearn.metrics, matplotlib.pyplot, statsmodels.formula.api, seaborn are required to run the .py files. Ensure all packages are installed before running the scripts. Data files required to run the code (.xlsx and .csv format) are included in the relevant folders.

  3. Nike, Adidas and Converse Shoes Images

    • kaggle.com
    zip
    Updated Aug 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iron486 (2022). Nike, Adidas and Converse Shoes Images [Dataset]. https://www.kaggle.com/datasets/die9origephit/nike-adidas-and-converse-imaged/code
    Explore at:
    zip(16354002 bytes)Available download formats
    Dataset updated
    Aug 3, 2022
    Authors
    Iron486
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F6372737%2F2d0c8c299f63bb8a5823683346ba1ba8%2FImage2.jpg?generation=1659570752665846&alt=media">

    The dataset contains 2 folders: one with the test data and the other one with train data. The test-train-split ratio is 0.14, with the test dataset containing 114 images and the train dataset containing 711. The images have a resolution of 240x240 pixels in RGB color model. Both the folders contain 3 classes:

    • Adidas
    • Converse
    • Nike ** ** ### Inspiration

    This dataset is ideal for performing multiclass classification with deep neural networks like CNNs or simpler machine learning classification models. You can use Tensorflow, his high-level API keras, Sklearn, PyTorch or other deep/machine learning libraries to building the model from scratch or, as an alternative, fetching pretrained models as well as fine-tuning them. It is also possible to modify the size of the images or preprocessing them using OpenCV , and check if the accuracy of the model improves.
    Remember to upvote if you found the dataset useful :).

    Collection methodology

    The dataset was obtained downloading images from Google images.

    The images with a .webp format were transformed into .jpg images. The obtained images were randomly shuffled and resized so that all the images had a resolution of 240x240 pixels. Then, they were split into train and test datasets and saved.

  4. Iris Species

    • kaggle.com
    zip
    Updated Sep 27, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCI Machine Learning (2016). Iris Species [Dataset]. https://www.kaggle.com/datasets/uciml/iris
    Explore at:
    zip(3687 bytes)Available download formats
    Dataset updated
    Sep 27, 2016
    Dataset authored and provided by
    UCI Machine Learning
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Iris dataset was used in R.A. Fisher's classic 1936 paper, The Use of Multiple Measurements in Taxonomic Problems, and can also be found on the UCI Machine Learning Repository.

    It includes three iris species with 50 samples each as well as some properties about each flower. One flower species is linearly separable from the other two, but the other two are not linearly separable from each other.

    The columns in this dataset are:

    • Id
    • SepalLengthCm
    • SepalWidthCm
    • PetalLengthCm
    • PetalWidthCm
    • Species

    Sepal Width vs. Sepal Length

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bartłomiej Starosta; Mieczysław A. Kłopotek; Sławomir T. Wierzchoń; Dariusz Czerski; Marcin Sydow; Piotr Borkowski (2025). L-based spectral clustering scores under diverse settings of affinity parameter (column names). [Dataset]. http://doi.org/10.1371/journal.pone.0313238.t009
Organization logo

L-based spectral clustering scores under diverse settings of affinity parameter (column names).

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Feb 4, 2025
Dataset provided by
PLOShttp://plos.org/
Authors
Bartłomiej Starosta; Mieczysław A. Kłopotek; Sławomir T. Wierzchoń; Dariusz Czerski; Marcin Sydow; Piotr Borkowski
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

All the metrics used are available in the sklearn package, see the documentation at https://scikit-learn.org/stable/api/sklearn.metrics.html.

Search
Clear search
Close search
Google apps
Main menu