https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains 6 columns and 10k rows about the demographics of the users of an app. UID - User ID, unique identifier for every app user. reg_date - Date that each user registered. device - Operating system of the user. Gender - Gender of the user Country - Country where the user downloaded the app. Age - Age of the user.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This comprehensive iOS application reviews dataset contains thousands of authentic user reviews from the Apple App Store in English. The dataset provides valuable insights for app developers, marketers, and researchers studying mobile application performance and user sentiment.
Key Features:
Applications: Perfect for sentiment analysis, app store optimization, mobile app development research, user experience studies, and competitive analysis. This dataset enables businesses to understand user preferences, identify app improvement opportunities, and develop better mobile applications.
Data Quality: All reviews are genuine user feedback collected from the official Apple App Store, ensuring authenticity and reliability for research and business intelligence purposes. The dataset covers various app categories including fitness, shopping, education, entertainment, and productivity applications.
Population and other demographic information is collected by the US Census Bureau.
View the US Census Bureau's Quick Facts page about Bloomington, Indiana at https://www.census.gov/quickfacts
The Demographic Profile and other data for Bloomington can be viewed or downloaded from the American FactFinder search tool: https://factfinder.census.gov/bkmk/cf/1.0/en/place/Bloomington city, Indiana/POPULATION/DECENNIAL_CNT
The Census Bureau is creating a new platform for data. This site is in a preview stage and some parts are under construction. Here is a link for Bloomington: https://data.census.gov/cedsci/results/all?q=Bloomington%20city,%20Indiana&g=1600000US1805860&ps=app*from@SINGLE_SEARCH
The City webpage for Census data contains other related information: https://bloomington.in.gov/about/census-data
This data set contains some basic statistics about user count and user growth as well as crash count for a real mobile app. The dataset contains a basic timeseries of 1 hour resolution for a period of one week.
The data set contains columns for total concurrent user count, new users acquired in that period of time, number of sessions and crash count.
This data set would not be available without the Real User Monitoring capabilities of Dynatrace and its flexibility to export and expose this data for scientific experiments.
The data set was intended to play around with seasonality, trend and prediction of timeseries.
Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases:
360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.
Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment
Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.
Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Using Factori Consumer Data graph you can solve use cases like:
Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.
Lookalike Modeling
Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers
And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains year, month and payment application-wise UPI Apps Transaction Statistics like Customer Initiated Transactions, B2C Transactions, B2B Transactions and On-us Transactions Note: 1) Unified Payments Interface(UPI) is an instant real-time payment system developed by National Payments Corporation of India. The interface facilitates inter-bank peer-to-peer and person-to-merchant transactions 2) From January 2021 onwards, ‚On-us Transactions‚ in UPI that are not processed and settled through the UPI Central System is shown under ‚ On-us Transactions column 3) Apps which has volume less than 10,000 is included under‚ Other Apps. 4) App volume in table is basis the Payer App logic, i.e the financial transaction is attributed to the PSP in UPI on the Payer's side. 5) BHIM Volume is inclusive of *99# volume. 6) For WhatsApp, Maximum registered user base of hundred (100) million in UPI
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Social networks are tied to population dynamics; interactions are driven by population density and demographic structure, while social relationships can be key determinants of survival and reproductive success. However, difficulties integrating models used in demography and network analysis have limited research at this interface. We introduce the R package genNetDem for simulating integrated network-demographic datasets. It can be used to create longitudinal social networks and/or capture-recapture datasets with known properties. It incorporates the ability to generate populations and their social networks, generate grouping events using these networks, simulate social network effects on individual survival, and flexibly sample these longitudinal datasets of social associations. By generating co-capture data with known statistical relationships it provides functionality for methodological research. We demonstrate its use with case studies testing how imputation and sampling design influence the success of adding network traits to conventional Cormack-Jolly-Seber (CJS) models. We show that incorporating social network effects in CJS models generates qualitatively accurate results, but with downward-biased parameter estimates when network position influences survival. Biases are greater when fewer interactions are sampled or fewer individuals are observed in each interaction. While our results indicate the potential of incorporating social effects within demographic models, they show that imputing missing network measures alone is insufficient to accurately estimate social effects on survival, pointing to the importance of incorporating network imputation approaches. genNetDem provides a flexible tool to aid these methodological advancements and help researchers test other sampling considerations in social network studies. Methods The dataset and code stored here is for Case Studies 1 and 2 in the paper. Datsets were generated using simulations in R. Here we provide 1) the R code used for the simulations; 2) the simulation outputs (as .RDS files); and 3) the R code to analyse simulation outputs and generate the tables and figures in the paper.
This dataset contains information on application install interactions of users in the Myket android application market. The dataset was created for the purpose of evaluating interaction prediction models, requiring user and item identifiers along with timestamps of the interactions. Hence, the dataset can be used for interaction prediction and building a recommendation system. Furthermore, the data forms a dynamic network of interactions, and we can also perform network representation learning on the nodes in the network, which are users and applications.
Data Creation The dataset was initially generated by the Myket data team, and later cleaned and subsampled by Erfan Loghmani a master student at Sharif University of Technology at the time. The data team focused on a two-week period and randomly sampled 1/3 of the users with interactions during that period. They then selected install and update interactions for three months before and after the two-week period, resulting in interactions spanning about 6 months and two weeks.
We further subsampled and cleaned the data to focus on application download interactions. We identified the top 8000 most installed applications and selected interactions related to them. We retained users with more than 32 interactions, resulting in 280,391 users. From this group, we randomly selected 10,000 users, and the data was filtered to include only interactions for these users. The detailed procedure can be found in here.
Data Structure The dataset has two main files.
myket.csv: This file contains the interaction information and follows the same format as the datasets used in the "JODIE: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks" (ACM SIGKDD 2019) project. However, this data does not contain state labels and interaction features, resulting in associated columns being all zero. app_info_sample.csv: This file comprises features associated with applications present in the sample. For each individual application, information such as the approximate number of installs, average rating, count of ratings, and category are included. These features provide insights into the applications present in the dataset.
Dataset Details
Total Instances: 694,121 install interaction instances Instances Format: Triplets of user_id, app_name, timestamp 10,000 users and 7,988 android applications Item features for 7,606 applications
For a detailed summary of the data's statistics, including information on users, applications, and interactions, please refer to the Python notebook available at summary-stats.ipynb. The notebook provides an overview of the dataset's characteristics and can be helpful for understanding the data's structure before using it for research or analysis.
Top 20 Most Installed Applications | Package Name | Count of Interactions | | ---------------------------------- | --------------------- | | com.instagram.android | 15292 | | ir.resaneh1.iptv | 12143 | | com.tencent.ig | 7919 | | com.ForgeGames.SpecialForcesGroup2 | 7797 | | ir.nomogame.ClutchGame | 6193 | | com.dts.freefireth | 6041 | | com.whatsapp | 5876 | | com.supercell.clashofclans | 5817 | | com.mojang.minecraftpe | 5649 | | com.lenovo.anyshare.gps | 5076 | | ir.medu.shad | 4673 | | com.firsttouchgames.dls3 | 4641 | | com.activision.callofduty.shooter | 4357 | | com.tencent.iglite | 4126 | | com.aparat | 3598 | | com.kiloo.subwaysurf | 3135 | | com.supercell.clashroyale | 2793 | | co.palang.QuizOfKings | 2589 | | com.nazdika.app | 2436 | | com.digikala | 2413 |
Comparison with SNAP Datasets The Myket dataset introduced in this repository exhibits distinct characteristics compared to the real-world datasets used by the project. The table below provides a comparative overview of the key dataset characteristics:
Dataset | #Users | #Items | #Interactions | Average Interactions per User | Average Unique Items per User |
---|---|---|---|---|---|
Myket | 10,000 | 7,988 | 694,121 | 69.4 | 54.6 |
LastFM | 980 | 1,000 | 1,293,103 | 1,319.5 | 158.2 |
10,000 | 984 | 672,447 | 67.2 | 7.9 | |
Wikipedia | 8,227 | 1,000 | 157,474 | 19.1 | 2.2 |
MOOC | 7,047 | 97 | 411,749 | 58.4 | 25.3 |
The Myket dataset stands out by having an ample number of both users and items, highlighting its relevance for real-world, large-scale applications. Unlike LastFM, Reddit, and Wikipedia datasets, where users exhibit repetitive item interactions, the Myket dataset contains a comparatively lower amount of repetitive interactions. This unique characteristic reflects the diverse nature of user behaviors in the Android application market environment.
Citation If you use this dataset in your research, please cite the following preprint:
@misc{loghmani2023effect, title={Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks}, author={Erfan Loghmani and MohammadAmin Fazli}, year={2023}, eprint={2308.06862}, archivePrefix={arXiv}, primaryClass={cs.LG} }
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.
Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!
Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017
The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.
Only proper citing is required please see the documentation for details. Have Fun!!!
Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.
For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965
please note: it is my personal number and email is preferred
Check our data's accuracy: Census Fact Checker
Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:
A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.
The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.
This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.
African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.
For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.
References:
Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.
Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.
UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.
WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.
Monthly, quarterly, and annual data on electricity generation, consumption, retail sales, price, revenue from retail sales, useful thermal output, fossil fuel stocks, fossil fuel receipts, and quality of fossil fuel. Data organized by fuel type, i.e., coal petroleum, natural gas, nuclear, hydroelectric, wind, solar, geothermal, and wood. Also, data organized by sector, i.e., electric power, electric utility, independent power producers, commercial, and industrial. Users of the EIA API are required to obtain an API Key via this registration form: http://www.eia.gov/beta/api/register.cfm
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This research conducted an online survey to investigate the relationship between dating app use and hookup intention. It measured dating app use, perceived descriptive norms, injunctive norms, fear of negative evaluation, hookup intention, and demographic information including age, gender, sexual orientation, and relationship status.
List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)
https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional dat
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There has been an increased emphasis on plant-based foods and diets. Although mobile technology has the potential to be a convenient and innovative tool to help consumers adhere to dietary guidelines, little is known about the content and quality of free, popular mobile health (mHealth) plant-based diet apps. The objective of the study was to assess the content and quality of free, popular mHealth apps supporting plant-based diets for Canadians. Free mHealth apps with high user ratings, a high number of user ratings, available on both Apple App and GooglePlay stores, and primarily marketed to help users follow plant-based diet were included. Using pre-defined search terms, Apple App and GooglePlay App stores were searched on December 22, 2020; the top 100 returns for each search term were screened for eligibility. Included apps were downloaded and assessed for quality by three dietitians/nutrition research assistants using the Mobile App Rating Scale (MARS) and the App Quality Evaluation (AQEL) scale. Of the 998 apps screened, 16 apps (mean user ratings±SEM: 4.6±0.1) met the eligibility criteria, comprising 10 recipe managers and meal planners, 2 food scanners, 2 community builders, 1 restaurant identifier, and 1 sustainability assessor. All included apps targeted the general population and focused on changing behaviors using education (15 apps), skills training (9 apps), and/or goal setting (4 apps). Although MARS (scale: 1–5) revealed overall adequate app quality scores (3.8±0.1), domain-specific assessments revealed high functionality (4.0±0.1) and aesthetic (4.0±0.2), but low credibility scores (2.4±0.1). The AQEL (scale: 0–10) revealed overall low score in support of knowledge acquisition (4.5±0.4) and adequate scores in other nutrition-focused domains (6.1–7.6). Despite a variety of free plant-based apps available with different focuses to help Canadians follow plant-based diets, our findings suggest a need for increased credibility and additional resources to complement the low support of knowledge acquisition among currently available plant-based apps. This research received no specific grant from any funding agency.
Table from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We conducted a study to investigate how users' app-specific knowledge influences their preferences for the depth and format of software explanations. Participants completed an online survey, which included questions designed to assess both subjective and objective knowledge of software in two app categories: browser and office applications. Objective app-specific knowledge was measured through multiple-choice questions with definitive answers, while subjective familiarity was self-assessed by participants. Preferences for explanation formats (e.g., text, video) and detail levels were also collected.
The dataset includes raw survey responses, processed objective and subjective knowledge scores, and a comprehensive correlation analysis between knowledge levels, demographics, and explanation preferences. We also provide SQL scripts for extracting data on specific variables (e.g., demographics, knowledge scores) to facilitate targeted analyses. The repository is structured to support replication or extension of the study, with organized directories for Excel results, SQL extraction scripts, and raw survey data, including the original LimeSurvey questionnaire in PDF format.
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains 6 columns and 10k rows about the demographics of the users of an app. UID - User ID, unique identifier for every app user. reg_date - Date that each user registered. device - Operating system of the user. Gender - Gender of the user Country - Country where the user downloaded the app. Age - Age of the user.