100+ datasets found
  1. b

    App Store Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

  2. IOS App Store reviews dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS App Store reviews dataset [Dataset]. https://crawlfeeds.com/datasets/ios-app-store-reviews-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.

    Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.

    Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.

    Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.

  3. Google Play Store Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data, Google Play Store Datasets [Dataset]. https://brightdata.com/products/datasets/google-play-store
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.

  4. mac-app-store-apps-metadata

    • huggingface.co
    Updated Feb 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MacPaw Way Ltd. (2024). mac-app-store-apps-metadata [Dataset]. https://huggingface.co/datasets/MacPaw/mac-app-store-apps-metadata
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    MacPaw
    Authors
    MacPaw Way Ltd.
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for Macappstore Applications Metadata

    Mac App Store Applications Metadata sourced by the public API.

    Curated by: MacPaw Way Ltd.

    Language(s) (NLP): Mostly EN, DE License: MIT

      Dataset Details
    

    This data aims to cover our internal company research needs and start collecting and sharing the macOS app dataset since we have yet to find a suitable existing one. Full application metadata was sourced by the public iTunes search API for the US, Germany, and Ukraine… See the full description on the dataset page: https://huggingface.co/datasets/MacPaw/mac-app-store-apps-metadata.

  5. d

    Google Play Store Apps / Games Data, Android Apps Data, Consumer Review...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja, Google Play Store Apps / Games Data, Android Apps Data, Consumer Review Data, Top Charts | Real-Time API [Dataset]. https://datarade.ai/data-products/openweb-ninja-google-play-store-data-android-apps-games-openweb-ninja
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Korea (Republic of), Finland, Nicaragua, Netherlands, Mali, Guam, Christmas Island, Bermuda, Azerbaijan, Macedonia (the former Yugoslav Republic of)
    Description

    Use the OpenWeb Ninja Google Play App Store Data API to access comprehensive data on Google Play Store, including Android Apps / Games, reviews, top charts, search, and more. Our extensive dataset provides over 40 app store data points, enabling you to gain deep insights into the market.

    The App Store Data dataset includes all key app details:

    App Name, Description, Rating, Photos, Downloads, Version Information, App Size, Permissions, Developer and Contact Information, Consumer Review Data.

  6. IOS application reviews dataset in English

    • crawlfeeds.com
    csv, zip
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS application reviews dataset in English [Dataset]. https://crawlfeeds.com/datasets/ios-application-reviews-dataset-in-english
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This comprehensive iOS application reviews dataset contains thousands of authentic user reviews from the Apple App Store in English. The dataset provides valuable insights for app developers, marketers, and researchers studying mobile application performance and user sentiment.

    Key Features:

    • Real user reviews from popular iOS apps
    • Star ratings from 1 to 5 stars
    • Review dates and timestamps
    • App store URLs and metadata
    • User demographics and location data
    • App version information
    • Review titles and detailed feedback

    Applications: Perfect for sentiment analysis, app store optimization, mobile app development research, user experience studies, and competitive analysis. This dataset enables businesses to understand user preferences, identify app improvement opportunities, and develop better mobile applications.

    Data Quality: All reviews are genuine user feedback collected from the official Apple App Store, ensuring authenticity and reliability for research and business intelligence purposes. The dataset covers various app categories including fitness, shopping, education, entertainment, and productivity applications.

  7. Sample App Store dataset

    • kaggle.com
    Updated Aug 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksandr Krainov (2019). Sample App Store dataset [Dataset]. https://www.kaggle.com/somertonman/sample-app-store-for-apps-analysis/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 27, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aleksandr Krainov
    Description

    Dataset

    This dataset was created by Aleksandr Krainov

    Contents

  8. w

    App Store Data Renderer – WordPress Plugin Usage Dataset

    • watsonwp.com
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WatsonWP (2025). App Store Data Renderer – WordPress Plugin Usage Dataset [Dataset]. https://watsonwp.com/plugins/app-store-data-renderer/
    Explore at:
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    WatsonWP
    License

    https://watsonwp.com/terms/https://watsonwp.com/terms/

    Variables measured
    Share of index, Observed active sites
    Measurement technique
    web crawl; site classification; plugin fingerprinting
    Description

    Observed adoption of the App Store Data Renderer plugin across real WordPress sites in the WatsonWP index.

  9. Google Play Store Apps Dataset

    • kaggle.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Feroz Shinwari (2024). Google Play Store Apps Dataset [Dataset]. https://www.kaggle.com/datasets/ferozshahshinwari/google-play-store-apps-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Feroz Shinwari
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Feroz Shinwari

    Released under CC0: Public Domain

    Contents

  10. h

    apple-app-store-labels-policies

    • huggingface.co
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mir Masood Ali (2024). apple-app-store-labels-policies [Dataset]. https://huggingface.co/datasets/masoodali/apple-app-store-labels-policies
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 11, 2024
    Authors
    Mir Masood Ali
    License

    https://choosealicense.com/licenses/gpl-3.0/https://choosealicense.com/licenses/gpl-3.0/

    Description

    masoodali/apple-app-store-labels-policies dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. mac-app-store-apps-descriptions

    • huggingface.co
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MacPaw Way Ltd. (2024). mac-app-store-apps-descriptions [Dataset]. https://huggingface.co/datasets/MacPaw/mac-app-store-apps-descriptions
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    MacPaw
    Authors
    MacPaw Way Ltd.
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for Macappstore Applications Descriptions

    Mac App Store Applications descriptions extracted from the metadata from the public API.

    Curated by: MacPaw Way Ltd.

    Language(s) (NLP): Mostly EN, DE License: MIT

      Dataset Details
    

    This dataset is a combined and refined Mac App Store Applications Metadata dataset subset. The main idea behind its creation is to separate the description texts of the macOS apps for the convenience of further analysis.… See the full description on the dataset page: https://huggingface.co/datasets/MacPaw/mac-app-store-apps-descriptions.

  12. Z

    Dataset used for "A Recommender System of Buggy App Checkers for App Store...

    • data.niaid.nih.gov
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Gomez (2021). Dataset used for "A Recommender System of Buggy App Checkers for App Store Moderators" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5034291
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    Maria Gomez
    Martin Monperrus
    Lionel Seinturier
    Romain Rouvoy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.

    Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.

    The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.

    For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.

    In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app β€”i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).

    Dataset Stats Some stats about the datasets:

    • D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.

    • D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.

    Additional stats about the datasets are available here.

    Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).

    In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).

    Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:

    • USES_PERMISSION relationships between APP and PERMISSION nodes
    • HAS_REVIEW between APP and USER_REVIEW nodes
    • HAS_TOPIC between USER_REVIEW and TOPIC nodes
    • BELONGS_TO_CATEGORY between APP and CATEGORY nodes
    • BELONGS_TO_SUBCATEGORY between APP and SUBCATEGORY nodes

    Dataset Files Info

    Neo4j 2.0 Databases

    googlePlayDB1-Jan2014_neo4j_2_0.rar

    googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).

    Neo4j 3.5 Databases

    googlePlayDB1-Jan2014_neo4j_3_5_28.rar

    googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.

      In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
    
      First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
    
  13. Google Play Store Apps

    • kaggle.com
    zip
    Updated Feb 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lavanya (2019). Google Play Store Apps [Dataset]. https://www.kaggle.com/lava18/google-play-store-apps
    Explore at:
    zip(2037893 bytes)Available download formats
    Dataset updated
    Feb 3, 2019
    Authors
    Lavanya
    Description

    Context

    While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.

    Content

    Each app (row) has values for catergory, rating, size, and more.

    Acknowledgements

    This information is scraped from the Google Play Store. This app information would not be available without it.

    Inspiration

    The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!

  14. Google Play Store Reviews Database

    • crawlfeeds.com
    csv, zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2024). Google Play Store Reviews Database [Dataset]. https://crawlfeeds.com/datasets/google-play-store-reviews-database
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Explore the Google Play Store Reviews Database, a comprehensive collection of user reviews for various apps available on the Google Play Store.

    This dataset includes millions of reviews across a wide range of categories such as games, productivity, social media, finance, health, and more. Each review entry provides essential details, including app names, user ratings, review texts, review dates, and user feedback, offering valuable insights for developers, data analysts, and market researchers.

    Key Features:

    • Extensive Review Coverage: Contains millions of user reviews from the Google Play Store, covering various app categories like games, productivity, social media, finance, and health.
    • Detailed Review Information: Each review includes key details such as app name, user rating, review text, review date, and user feedback, allowing for in-depth analysis of user sentiment and app performance.
    • Ideal for Market Analysis: Perfect for developers, data scientists, and market researchers interested in analyzing user feedback, studying trends in app usage, or optimizing app development strategies based on user reviews.
    • Rich Source of User Insights: Provides a comprehensive overview of user experiences and preferences, helping professionals stay updated on the latest trends, popular apps, and user satisfaction levels.

    Whether you're analyzing user feedback, researching market trends, or developing new app strategies, the Google Play Store Reviews Database is an invaluable resource that provides detailed insights and extensive coverage of app reviews on the Google Play Store.

  15. e

    The manifest and store data of 870,515 Android mobile applications - Dataset...

    • b2find.eudat.eu
    Updated Oct 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). The manifest and store data of 870,515 Android mobile applications - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/b25ee20e-5268-50ae-9914-4bc70bd4ff1c
    Explore at:
    Dataset updated
    Oct 23, 2023
    Description

    We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.

  16. 365k IOS apps categorized Logos

    • kaggle.com
    Updated Jan 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fentyforte (2021). 365k IOS apps categorized Logos [Dataset]. https://www.kaggle.com/fentyforte/365k-ios-apps-categorized-logos
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 4, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    fentyforte
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    We a group of students from a Data Science and Machine Learning Bootcamp in which we have decided to create an AI logo generator for our capstone project. We need huge amount of logos for training our deep learning model - DCGAN so we have scraped over 365k data from the Apple App Store to download the logos of the apps for training purposes.

    GitHub Link of our Project - LOGOβ…ƒ : https://github.com/jackychansky/Logo-Generator-by-DCGAN/blob/main/README.md

    Content

    We have used Rapid API to acquire the data we need and we have scraped over 10,000,000 apps infomation (link to the dataset: https://www.kaggle.com/fentyforte/365k-ios-apps-dataset) thus downloading all the logos from the logolink scraped from the dataset to create the current large logo dataset.

  17. πŸ“± Google Play App Reviews Dataset πŸ“Š

    • kaggle.com
    Updated Jan 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hassaan Mustafavi (2025). πŸ“± Google Play App Reviews Dataset πŸ“Š [Dataset]. https://www.kaggle.com/datasets/hassaanmustafavi/google-play-app-reviews-dataset/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 26, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hassaan Mustafavi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Don't forget to hit the upvoteπŸ™πŸ™

    πŸ”– Overview

    The Google Play App Reviews dataset contains valuable feedback from users who have reviewed apps on the Google Play Store. This dataset includes both user ratings and detailed comments, making it ideal for sentiment analysis, user experience evaluation, and app performance research.

    πŸ“š Columns Description

    Column NameDescription
    review_idUnique identifier for each review. πŸ†”
    user_nameName of the user who submitted the review. πŸ‘€
    review_titleTitle of the review (may be empty in some cases). πŸ“
    review_descriptionThe content or feedback given by the user about the app. πŸ’¬
    ratingRating given by the user, ranging from 1 (low) to 5 (high). ⭐
    thumbs_upNumber of thumbs up the review received. πŸ‘
    review_dateDate and time the review was submitted. πŸ“…
    developer_responseResponse from the app developer (if provided). πŸ’¬πŸ‘¨β€πŸ’»
    developer_response_dateDate when the developer responded to the review. πŸ“…πŸ’»
    appVersionThe version of the app when the review was submitted. πŸ“±πŸ”’
    language_codeThe language in which the review was written (e.g., 'en' for English). πŸ—£οΈ
    country_codeThe country of the user based on their review (e.g., 'us' for United States). 🌍

    πŸ“Š Key Features

    • βœ… Rich Feedback: Includes both ratings and textual feedback from users.
    • 🌍 Global Reach: Reviews are collected from users worldwide, providing diverse insights.
    • πŸ”’ Anonymized Data: No personally identifiable information is included.
    • βš™οΈ Ready for Analysis: Cleaned and pre-processed for immediate use in sentiment analysis and app performance evaluation.

    🎯 Potential Use Cases

    • Sentiment Analysis: Analyze user sentiment based on reviews and ratings.
    • Customer Feedback: Measure user satisfaction and discover areas for improvement.
    • App Version Comparison: Evaluate how different versions of the app perform based on user feedback.
    • Geographic Insights: Analyze regional differences in app usage and reviews.
    • Developer Interaction: Assess the effectiveness of developer responses to user reviews.

    πŸš€ Get Started!

    Ready to dive into the world of app feedback and sentiment analysis? Explore the dataset, build models to understand user sentiments, and enhance app experiences based on real feedback.

    Happy coding! ✨

  18. Google Play Store_Cleaned

    • kaggle.com
    Updated Mar 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yash (2023). Google Play Store_Cleaned [Dataset]. https://www.kaggle.com/datasets/yash16jr/google-play-store-cleaned
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 26, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yash
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This Dataset is the cleaned up version of the Google Play Store Data dataset , available on Kaggle. The EDA and data cleaning was performed using Python .

  19. New Google Play Store - Android Apps dataset

    • kaggle.com
    Updated Aug 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tung M Phung (2020). New Google Play Store - Android Apps dataset [Dataset]. https://www.kaggle.com/tungmphung/new-google-play-store-android-apps-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 25, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tung M Phung
    Description

    Context

    To date (April 2020), Android is still the most popular mobile operating system in the world. Taking into account billion of Android users worldwide, mining this data has the potential to reveal user behaviors and trends in the whole global scope.

    Content

    There are 2 CSV files: - app.csv with 53,732 rows and 18 columns. - comment.csv with 1,468,173 rows and 4 columns.

    The scraping was done in April 2020.

    Acknowledgements

    This dataset is obtained from scraping Google Play Store. Without Google and Android, this dataset wouldn’t have existed.

    The dataset is first published in this blog.

    Inspiration

    Business trends on mobile can be explored by examining this dataset.

  20. Dataset: Gold standard dataset for explainability need detection in app...

    • zenodo.org
    zip
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Obaidi; Martin Obaidi (2025). Dataset: Gold standard dataset for explainability need detection in app reviews. [Dataset]. http://doi.org/10.5281/zenodo.13273192
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Obaidi; Martin Obaidi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We crawled 90,000 app reviews from both Google Play Store and Apple App Store, including reviews from both free and paid apps. These reviews were filtered for explainability needs, and after this process, 4,495 reviews remained. Among them, 2,185 reviews indicated an explanation need, while 2,310 did not. This resulting gold standard dataset was used to train and evaluate several machine learning models and rule-based approaches for detecting explanation needs in app reviews.

    The dataset includes both balanced and unbalanced evaluation sets, as well as the original crawled data from October 2023. In addition to machine learning approaches, rule-based methods optimized for F1 score, precision, and recall are also included.

    We provide several pre-trained machine learning models (including BERT, SetFit, AdaBoost, K-Nearest Neighbor, Logistic Regression, Naive Bayes, Random Forest, and SVM) along with training scripts and evaluation notebooks. These models can be applied directly or retrained using the included datasets.

    For further details on the structure and usage of the dataset, please refer to the README.md file within the provided ZIP archive.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/

App Store Data (2025)

Explore at:
34 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 1, 2025
Dataset authored and provided by
Business of Apps
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

Search
Clear search
Close search
Google apps
Main menu