Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...
Use the OpenWeb Ninja Google Play App Store Data API to access comprehensive data on Google Play Store, including Android Apps / Games, reviews, top charts, search, and more. Our extensive dataset provides over 40 app store data points, enabling you to gain deep insights into the market.
The App Store Data dataset includes all key app details:
App Name, Description, Rating, Photos, Downloads, Version Information, App Size, Permissions, Developer and Contact Information, Consumer Review Data.
This dataset was created by Zakaria Hussain
https://brightdata.com/licensehttps://brightdata.com/license
This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for Macappstore Applications Metadata
Mac App Store Applications Metadata sourced by the public API.
Curated by: MacPaw Way Ltd.
Language(s) (NLP): Mostly EN, DE License: MIT
Dataset Details
This data aims to cover our internal company research needs and start collecting and sharing the macOS app dataset since we have yet to find a suitable existing one. Full application metadata was sourced by the public iTunes search API for the US, Germany, and Ukraine… See the full description on the dataset page: https://huggingface.co/datasets/MacPaw/mac-app-store-apps-metadata.
https://watsonwp.com/terms/https://watsonwp.com/terms/
Observed adoption of the App Store Data Renderer plugin across real WordPress sites in the WatsonWP index.
This dataset was created by ojshav saxena
We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.
This dataset was created by Najir 0123
Released under Other (specified in description)
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.
Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.
The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.
For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.
In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).
Dataset Stats Some stats about the datasets:
D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.
D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.
Additional stats about the datasets are available here.
Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).
In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).
Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:
Dataset Files Info
Neo4j 2.0 Databases
googlePlayDB1-Jan2014_neo4j_2_0.rar
googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).
Neo4j 3.5 Databases
googlePlayDB1-Jan2014_neo4j_3_5_28.rar
googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.
In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.
Each app (row) has values for catergory, rating, size, and more.
This information is scraped from the Google Play Store. This app information would not be available without it.
The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Google Playstore App data of 600K+ applications with all public details. Last updated on July 2020.
Markets
Mobile Application,App Store
603047
$399.00
Dataset for the paper A Longitudinal Study of Removed Apps in iOS App Store (WWW 2021)
There's a story behind every dataset and here's your opportunity to share yours. Based on installs, reviews you can sort out the apps. A clear picture can be drawn of apps, you can find out apps of what category are the most expensive, most popular, have most installs. Also various comparison can be done based on the data given in the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 154 verified Apple Store locations in China with complete contact information, ratings, reviews, and location data.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Dataset is the cleaned up version of the Google Play Store Data dataset , available on Kaggle. The EDA and data cleaning was performed using Python .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 12 verified Apple Store locations in Brazil with complete contact information, ratings, reviews, and location data.
This dataset was created by Joshua Cristopher Aritonang
Released under Data files © Original Authors
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...