67 datasets found
  1. G

    Consumer Mobile App Usage Stats

    • gomask.ai
    csv, json
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GoMask.ai (2025). Consumer Mobile App Usage Stats [Dataset]. https://gomask.ai/marketplace/datasets/consumer-mobile-app-usage-stats
    Explore at:
    csv(10 MB), jsonAvailable download formats
    Dataset updated
    Aug 21, 2025
    Dataset provided by
    GoMask.ai
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024 - 2025
    Area covered
    Global
    Variables measured
    date, app_id, country, app_name, platform, device_type, unique_users, total_launches, day_1_retention_rate, day_7_retention_rate, and 5 more
    Description

    This dataset provides daily, aggregated mobile app usage statistics, including launch counts, session lengths, and retention rates, segmented by platform, country, and device type. It enables detailed analysis of user engagement, retention, and growth trends across different mobile applications and markets, supporting strategic decisions for app development and marketing.

  2. Mobile_usage_dataset_individual_person

    • kaggle.com
    Updated Mar 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arul08 (2020). Mobile_usage_dataset_individual_person [Dataset]. https://www.kaggle.com/arul08/mobile-usage-dataset-individual-person/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 14, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    arul08
    Description

    Do you know?

    Do you know how much time you spend on an app? Do you know the total use time of a day or average use time of an app?

    What it consists of?

    This data set consists of - how many times a person unlocks his phone. - how much time he spends on every app on every day. - how much time he spends on his phone.

    It lists the usage time of apps for each day.

    What we can do?

    Use the test data to find the Total Minutes that we can use the given app in a day. we can get a clear stats of apps usage. This data set will show you about the persons sleeping behavior as well as what app he spends most of his time. with this we can improve the productivity of the person.

    The dataset was collected from the app usage app.

  3. Social video platforms engagement rate 2024

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Social video platforms engagement rate 2024 [Dataset]. https://www.statista.com/topics/1002/mobile-app-usage/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    During the first quarter of 2024, YouTube shorts recorded the highest engagement rate across all short video platforms and in-app features analyzed. Content hosted on YouTube in form of shorts had an engagement rate of 5.91 percent, while TikTok reported an engagement rate of approximately 5.75 percent. Facebook Reels had an engagement rate of around two percent, making the platform rank last for short-format user engagement.

  4. d

    Year, Month and Payment Application-wise UPI Apps Transaction Statistics

    • dataful.in
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year, Month and Payment Application-wise UPI Apps Transaction Statistics [Dataset]. https://dataful.in/datasets/413
    Explore at:
    application/x-parquet, xlsx, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    UPI Transaction Volumes, UPI Transaction Values,
    Description

    The dataset contains year, month and payment application-wise UPI Apps Transaction Statistics like Customer Initiated Transactions, B2C Transactions, B2B Transactions and On-us Transactions Note: 1) Unified Payments Interface(UPI) is an instant real-time payment system developed by National Payments Corporation of India. The interface facilitates inter-bank peer-to-peer and person-to-merchant transactions 2) From January 2021 onwards, ‚On-us Transactions‚ in UPI that are not processed and settled through the UPI Central System is shown under ‚ On-us Transactions column 3) Apps which has volume less than 10,000 is included under‚ Other Apps. 4) App volume in table is basis the Payer App logic, i.e the financial transaction is attributed to the PSP in UPI on the Payer's side. 5) BHIM Volume is inclusive of *99# volume. 6) For WhatsApp, Maximum registered user base of hundred (100) million in UPI

  5. Dating App User Profiles' stats - Lovoo v3

    • kaggle.com
    Updated Jul 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeffrey Mvutu Mabilama (2020). Dating App User Profiles' stats - Lovoo v3 [Dataset]. https://www.kaggle.com/jmmvutu/dating-app-lovoo-user-profiles/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jeffrey Mvutu Mabilama
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Foreword

    This dataset is a preview of a bigger dataset. My Telegram bot will answer your queries for more data and also allow you to contact me.

    Context

    When Dating apps like Tinder were becoming viral, people wanted to have the best profile in order to get more matches and more potential encounters. Unlike other previous dating platforms, those new ones emphasized on the mutuality of attraction before allowing any two people to get in touch and chat. This made it all the more important to create the best profile in order to get the best first impression.

    Parallel to that, we Humans have always been in awe before charismatic and inspiring people. The more charismatic people tend to be followed and listened to by more people. Through their metrics such as the number of friends/followers, social networks give some ways of "measuring" the potential charisma of some people.

    In regard to all that, one can then think: - what makes a great user profile ? - how to make the best first impression in order to get more matches (and ultimately find love, or new friendships) ? - what makes a person charismatic ? - how do charismatic people present themselves ?

    In order to try and understand those different social questions, I decided to create a dataset of user profile informations using the social network Lovoo when it came out. By using different methodologies, I was able to gather user profile data, as well as some usually unavailable metrics (such as the number of profile visits).

    Content

    The dataset contains user profile infos of users of the website Lovoo.

    The dataset was gathered during spring 2015 (april, may). At that time, Lovoo was expanding in european countries (among others), while Tinder was trending both in America and in Europe. At that time the iOS version of the Lovoo app was in version 3.

    Accessory image data

    The dataset references pictures (field pictureId) of user profiles. These pictures are also available for a fraction of users but have not been uploaded and should be asked separately.

    The idea when gathering the profile pictures was to determine whether some correlations could be identified between a profile picture and the reputation or success of a given profile. Since first impression matters, a sound hypothesis to make is that the profile picture might have a great influence on the number of profile visits, matches and so on. Do not forget that only a fraction of a user's profile is seen when browsing through a list of users.

    https://s1.dmcdn.net/v/BnWkG1M7WuJDq2PKP/x480" alt="App preview of browsing profiles">

    Details about collection methodology

    In order to gather the data, I developed a set of tools that would save the data while browsing through profiles and doing searches. Because of this approach (and the constraints that forced me to develop this approach) I could only gather user profiles that were recommended by Lovoo's algorithm for 2 profiles I created for this purpose occasion (male, open to friends & chats & dates). That is why there are only female users in the dataset. Another work could be done to fetch similar data for both genders or other age ranges.

    Regarding the number of user profiles It turned out that the recommendation algorithm always seemed to output the same set of user profiles. This meant Lovoo's algorithm was probably heavily relying on settings like location (to recommend more people nearby than people in different places or countries) and maybe cookies. This diminished the number of different user profiles that would be presented and included in the dataset.

    Inspiration

    As mentioned in the introduction, there are a lot of questions we can answer using a dataset such as this one. Some questions are related to - popularity, charisma - census and demographic studies. - Statistics about the interest of people joining dating apps (making friends, finding someone to date, finding true love, ...). - Detecting influencers / potential influencers and studying them

    Previously mentioned: - what makes a great user profile ? - how to make the best first impression in order to get more matches (and ultimately find love, or new friendships) ? - what makes a person charismatic ? - how do charismatic people present themselves ?

    Other works: - A starter analysis is available on my data.world account, made using a SQL query. Another file has been created through that mean on the dataset page. - The kaggle version of the dataset might contain a starter kernel.

  6. Mobile Application User Statistics

    • kaggle.com
    Updated Dec 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wolfgang (2018). Mobile Application User Statistics [Dataset]. https://www.kaggle.com/wolfgangb33r/usercount/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    wolfgang
    Description

    Context

    This data set contains some basic statistics about user count and user growth as well as crash count for a real mobile app. The dataset contains a basic timeseries of 1 hour resolution for a period of one week.

    Content

    The data set contains columns for total concurrent user count, new users acquired in that period of time, number of sessions and crash count.

    Acknowledgements

    This data set would not be available without the Real User Monitoring capabilities of Dynatrace and its flexibility to export and expose this data for scientific experiments.

    Inspiration

    The data set was intended to play around with seasonality, trend and prediction of timeseries.

  7. Share of mobile app revenues 2024, by monetization

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Share of mobile app revenues 2024, by monetization [Dataset]. https://www.statista.com/topics/1002/mobile-app-usage/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    As of May 2024, 44 percent of the total revenues generated by the global app market came from subscriptions. Other monetization methods such as paid downloads and in-app purchases represented the most popular types of revenue streams for global app publishers. Overall, 56 percent of total app revenues came from other monetization methods.

  8. Global daily mobile word gaming engagement 2024, by gender

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jessica Clement (2025). Global daily mobile word gaming engagement 2024, by gender [Dataset]. https://www.statista.com/topics/1002/mobile-app-usage/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Jessica Clement
    Description

    Between February 2023 and 2024, female mobile gamers worldwide spent an average of 21.6 minutes daily on word games, compared to only 20.9 minutes among male mobile gaming audiences. Male gamers in Latin America had the lowest daily user engagement with this genre.

  9. Z

    Dataset used for "A Recommender System of Buggy App Checkers for App Store...

    • data.niaid.nih.gov
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Gomez; Romain Rouvoy; Martin Monperrus; Lionel Seinturier (2021). Dataset used for "A Recommender System of Buggy App Checkers for App Store Moderators" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5034291
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    University of Lille / Inria
    Authors
    Maria Gomez; Romain Rouvoy; Martin Monperrus; Lionel Seinturier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.

    Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.

    The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.

    For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.

    In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).

    Dataset Stats Some stats about the datasets:

    • D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.

    • D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.

    Additional stats about the datasets are available here.

    Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).

    In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).

    Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:

    • USES_PERMISSION relationships between APP and PERMISSION nodes
    • HAS_REVIEW between APP and USER_REVIEW nodes
    • HAS_TOPIC between USER_REVIEW and TOPIC nodes
    • BELONGS_TO_CATEGORY between APP and CATEGORY nodes
    • BELONGS_TO_SUBCATEGORY between APP and SUBCATEGORY nodes

    Dataset Files Info

    Neo4j 2.0 Databases

    googlePlayDB1-Jan2014_neo4j_2_0.rar

    googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).

    Neo4j 3.5 Databases

    googlePlayDB1-Jan2014_neo4j_3_5_28.rar

    googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.

      In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
    
      First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
    
  10. Number of unique devices that used leading AI tools in China 2024

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Slotta (2025). Number of unique devices that used leading AI tools in China 2024 [Dataset]. https://www.statista.com/topics/1002/mobile-app-usage/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Daniel Slotta
    Description

    In August 2024, over half a million unique devices used the Chinese AI tool Aishenqi. Artificial intelligence tools include a broad range of artificial intelligence services. China's leading AI tools include code writing support, as well as a digital language study companion.

  11. Leading global markets for mobile app revenue 2024

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Leading global markets for mobile app revenue 2024 [Dataset]. https://www.statista.com/topics/1002/mobile-app-usage/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In 2024, the United States was the leading app market, with the Apple App Store and the Google App Store generating approximately 31 billion U.S. dollars of in-app revenues. China was the second-largest app market, as in-app revenues in the region generated approximately 17.34 billion U.S. dollars. Japan ranked third, as the region generated around 11.25 billion U.S. dollars in app revenues for the examined period.

  12. d

    An example data set to demonstrate the usage of M.o.R., a shiny app for...

    • datasets.ai
    • data.nist.gov
    • +2more
    21, 47
    Updated Mar 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2021). An example data set to demonstrate the usage of M.o.R., a shiny app for model-based metrology. [Dataset]. https://datasets.ai/datasets/an-example-data-set-to-demonstrate-the-usage-of-m-o-r-a-shiny-app-for-model-based-metrolog-98b63
    Explore at:
    47, 21Available download formats
    Dataset updated
    Mar 11, 2021
    Dataset authored and provided by
    National Institute of Standards and Technology
    Description

    This data set consists of several files that were created to accompany M.o.R., a shiny app created by the Surface & Nanostructure Metrology Group in the Engineering Physics Division of the Physical Measurement Laboratory (PML) at the National Institute of Standards and Technology. It was created to simplify model-based metrology. A detailed explanation of the proper usage can be found in the M.o.R. documentation.

  13. s

    Spotify User and Artist Analytics Dataset 2025

    • spotmod.online
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spotmod (2025). Spotify User and Artist Analytics Dataset 2025 [Dataset]. https://spotmod.online/spotify-stats/
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    Spotmod
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A dataset covering Spotify usage and artist performance in 2025, including metrics like monthly active users, premium subscriber counts, demographic breakdowns, and playlist analytics.

  14. u

    Authcode - Dataset

    • portalinvestigacion.um.es
    • ieee-dataport.org
    Updated 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio; Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio (2020). Authcode - Dataset [Dataset]. https://portalinvestigacion.um.es/documentos/668fc48eb9e7c03b01be0e33
    Explore at:
    Dataset updated
    2020
    Authors
    Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio; Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio
    Description

    Intending to cover the existing gap regarding behavioral datasets modelling interactions of users with individual a multiple devices in Smart Office to later authenticate them continuously, we publish the following collection of datasets, which has been generated after having five users interacting for 60 days with their personal computer and mobile devices. Below you can find a brief description of each dataset.Dataset 1 (2.3 GB). This dataset contains 92975 vectors of features (8096 per vector) that model the interactions of the five users with their personal computers. Each vector contains aggregated data about keyboard and mouse activity, as well as application usage statistics. More info about features meaning can be found in the readme file. Originally, the number of features of this dataset was 24 065 but after filtering the constant features, this number was reduced to 8096. There was a high number of constant features to 0 since each possible digraph (two keys combination) was considered when collecting the data. However, there are many unusual digraphs that the users never introduced in their computers, so these features were deleted in the uploaded dataset.Dataset 2 (8.9 MB). This dataset contains 61918 vectors of features (15 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about application usage statistics. More info about features meaning can be found in the readme file.Dataset 3 (28.9 MB). This dataset contains 133590vectors of features (42 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about the gyroscope and Accelerometer sensors.More info about features meaning can be found in the readme file.Dataset 4 (162.4 MB). This dataset contains 145465vectors of features (241 per vector)that model the interactions of the five users with both personal computers and mobile devices. Each vector contains the aggregation of the most relevant features of both devices. More info about features meaning can be found in the readme file.Dataset 5 (878.7 KB). This dataset is composed of 7 datasets. Each one of them contains an aggregation of feature vectors generated from the active/inactive intervals of personal computers and mobile devices by considering different time windows ranging from 1h to 24h.1h: 4074 vectors2h: 2149 vectors3h: 1470 vectors4h: 1133 vectors6h: 770 vectors12h: 440 vectors24h: 229 vectors

  15. Number of global social network users 2017-2028

    • statista.com
    • es.statista.com
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  16. a

    Open Data Analytics

    • community-esrica-apps.hub.arcgis.com
    • data-hrm.hub.arcgis.com
    • +1more
    Updated Sep 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Halifax Regional Municipality (2020). Open Data Analytics [Dataset]. https://community-esrica-apps.hub.arcgis.com/datasets/HRM::open-data-analytics
    Explore at:
    Dataset updated
    Sep 18, 2020
    Dataset authored and provided by
    Halifax Regional Municipality
    Description

    Table of usage statistics (number of views) for datasets within the Halifax Open Data Catalogue.The data was collected to show the usage of data within the Open Data Catalogue. Metadata

  17. Immigration system statistics data tables

    • gov.uk
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    Aug 21, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration system statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending June 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/689efececc5ef8b4c5fc448c/passenger-arrivals-summary-jun-2025-tables.ods">Passenger arrivals summary tables, year ending June 2025 (ODS, 31.3 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/689efd8307f2cc15c93572d8/electronic-travel-authorisation-datasets-jun-2025.xlsx">Electronic travel authorisation detailed datasets, year ending June 2025 (MS Excel Spreadsheet, 57.1 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68b08043b430435c669c17a2/visas-summary-jun-2025-tables.ods">Entry clearance visas summary tables, year ending June 2025 (ODS, 56.1 KB)

    https://assets.publishing.service.gov.uk/media/689efda51fedc616bb133a38/entry-clearance-visa-outcomes-datasets-jun-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending June 2025 (MS Excel Spreadsheet, 29.6 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional data relating to in country and overseas Visa applications can be fo

  18. d

    Electricity Data and Statistics Application Programming Interface (API)

    • catalog.data.gov
    • data.globalchange.gov
    • +1more
    Updated Jul 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Energy Information Administration (2021). Electricity Data and Statistics Application Programming Interface (API) [Dataset]. https://catalog.data.gov/dataset/electricity-data-and-statistics-application-programming-interface-api
    Explore at:
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    U.S. Energy Information Administration
    Description

    Monthly, quarterly, and annual data on electricity generation, consumption, retail sales, price, revenue from retail sales, useful thermal output, fossil fuel stocks, fossil fuel receipts, and quality of fossil fuel. Data organized by fuel type, i.e., coal petroleum, natural gas, nuclear, hydroelectric, wind, solar, geothermal, and wood. Also, data organized by sector, i.e., electric power, electric utility, independent power producers, commercial, and industrial. Users of the EIA API are required to obtain an API Key via this registration form: http://www.eia.gov/beta/api/register.cfm

  19. NewsUnravel Dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv, png
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    anon; anon (2024). NewsUnravel Dataset [Dataset]. http://doi.org/10.5281/zenodo.8344891
    Explore at:
    csv, pngAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    anon; anon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    About the NUDA Dataset
    Media bias is a multifaceted problem, leading to one-sided views and impacting decision-making. A way to address bias in news articles is to automatically detect and indicate it through machine-learning methods. However, such detection is limited due to the difficulty of obtaining reliable training data. To facilitate the data-gathering process, we introduce NewsUnravel, a news-reading web application leveraging an initially tested feedback mechanism to collect reader feedback on machine-generated bias highlights within news articles. Our approach augments dataset quality by significantly increasing inter-annotator agreement by 26.31% and improving classifier performance by 2.49%. As the first human-in-the-loop application for media bias, NewsUnravel shows that a user-centric approach to media bias data collection can return reliable data while being scalable and evaluated as easy to use. NewsUnravel demonstrates that feedback mechanisms are a promising strategy to reduce data collection expenses, fluidly adapt to changes in language, and enhance evaluators' diversity.

    General

    This dataset was created through user feedback on automatically generated bias highlights on news articles on the website NewsUnravel made by ANON. Its goal is to improve the detection of linguistic media bias for analysis and to indicate it to the public. Support came from ANON. None of the funders played any role in the dataset creation process or publication-related decisions.

    The dataset consists of text, namely biased sentences with binary bias labels (processed, biased or not biased) as well as metadata about the article. It includes all feedback that was given. The single ratings (unprocessed) used to create the labels with correlating User IDs are included.

    For training, this dataset was combined with the BABE dataset. All data is completely anonymous. Some sentences might be offensive or triggering as they were taken from biased or more extreme news sources. The dataset does not identify sub-populations or can be considered sensitive to them, nor is it possible to identify individuals.

    Description of the Data Files

    This repository contains the datasets for the anonymous NewsUnravel submission. The tables contain the following data:

    NUDAdataset.csv: the NUDA dataset with 310 new sentences with bias labels
    Statistics.png: contains all Umami statistics for NewsUnravel's usage data
    Feedback.csv: holds the participantID of a single feedback with the sentence ID (contentId), the bias rating, and provided reasons
    Content.csv: holds the participant ID of a rating with the sentence ID (contentId) of a rated sentence and the bias rating, and reason, if given
    Article.csv: holds the article ID, title, source, article metadata, article topic, and bias amount in %
    Participant.csv: holds the participant IDs and data processing consent

    Collection Process

    Data was collected through interactions with the Feedback Mechanism on NewsUnravel. A news article was displayed with automatically generated bias highlights. Each highlight could be selected, and readers were able to agree or disagree with the automatic label. Through a majority vote, labels were generated from those feedback interactions. Spammers were excluded through a spam detection approach.

    Readers came to our website voluntarily through posts on LinkedIn and social media as well as posts on university boards. The data collection period lasted for one week, from March 4th to March 11th (2023). The landing page informed them about the goal and the data processing. After being informed, they could proceed to the article overview.

    So far, the dataset has been used on top of BABE to train a linguistic bias classifier, adopting hyperparameter configurations from BABE with a pre-trained model from Hugging Face.
    The dataset will be open source. On acceptance, a link with all details and contact information will be provided. No third parties are involved.

    The dataset will not be maintained as it captures the first test of NewsUnravel at a specific point in time. However, new datasets will arise from further iterations. Those will be linked in the repository. Please cite the NewsUnravel paper if you use the dataset and contact us if you're interested in more information or joining the project.

  20. d

    Highway-Runoff Database (HRDB) Version 1.1.0

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Highway-Runoff Database (HRDB) Version 1.1.0 [Dataset]. https://catalog.data.gov/dataset/highway-runoff-database-hrdb-version-1-1-0
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Highway-Runoff Database (HRDB) was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration (FHWA) to provide planning-level information for decision makers, planners, and highway engineers to assess and mitigate possible adverse effects of highway runoff on the Nation’s receiving waters. The HRDB was assembled by using a Microsoft Access database application to facilitate use of the data and to calculate runoff-quality statistics with methods that properly handle censored-concentration data. This data release provides highway-runoff data, including information about monitoring sites, precipitation, runoff, and event-mean concentrations of water-quality constituents. The dataset was compiled from 37 studies as documented in 113 scientific or technical reports. The dataset includes data from 242 highway sites across the country. It includes data from 6,837 storm events with dates ranging from April 1975 to November 2017. Therefore, these data span more than 40 years; vehicle emissions and background sources of highway-runoff constituents have changed markedly during this time. For example, some of the early data is affected by use of leaded gasoline, phosphorus-based detergents, and industrial atmospheric deposition. The dataset includes 106,441 concentration values with data for 414 different water-quality constituents. This dataset was assembled from various sources and the original data was collected and analyzed by using various protocols. Where possible the USGS worked with State departments of transportation and the original researchers to obtain, document, and verify the data that was included in the HRDB. This new version (1.1.0) of the database contains software updates to provide data-quality information within the Graphical User Interface (GUI), calculate statistics for multiple sites in batch mode, and output additional statistics. However, inclusion in this dataset does not constitute endorsement by the USGS or the FHWA. People who use this data are responsible for ensuring that the data are complete and correct and that it is suitable for their intended purposes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GoMask.ai (2025). Consumer Mobile App Usage Stats [Dataset]. https://gomask.ai/marketplace/datasets/consumer-mobile-app-usage-stats

Consumer Mobile App Usage Stats

Explore at:
csv(10 MB), jsonAvailable download formats
Dataset updated
Aug 21, 2025
Dataset provided by
GoMask.ai
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Time period covered
2024 - 2025
Area covered
Global
Variables measured
date, app_id, country, app_name, platform, device_type, unique_users, total_launches, day_1_retention_rate, day_7_retention_rate, and 5 more
Description

This dataset provides daily, aggregated mobile app usage statistics, including launch counts, session lengths, and retention rates, segmented by platform, country, and device type. It enables detailed analysis of user engagement, retention, and growth trends across different mobile applications and markets, supporting strategic decisions for app development and marketing.

Search
Clear search
Close search
Google apps
Main menu