Facebook
TwitterDataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...
Facebook
TwitterProof web map for GeoInquiries Advanced Environmental Science lesson on Tropical Deforestation.THE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:• Population dynamics • Megacities • Down to the last drop • Dead zones (water pollution) • The Beagle’s Path • Primary productivity • Tropical Deforestation • Marine debris • El Nino (and climate) • Slowing malaria • Altered biomes • Spinning up wind power • Resource consumption and wealthTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms
This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.
Facebook
TwitterThis study focuses on the use of citizen science and GIS tools for collecting and analyzing data on Rose Swanson Mountain in British Columbia, Canada. While several organizations collect data on wildlife habitats, trail mapping, and fire documentation on the mountain, there are few studies conducted on the area and citizen science is not being addressed. The study aims to aggregate various data sources and involve citizens in the data collection process using ArcGIS Dashboard and ArcGIS Survey 123. These GIS tools allow for the integration and analysis of different kinds of data, as well as the creation of interactive maps and surveys that can facilitate citizen engagement and data collection. The data used in the dashboard was sourced from BC Data Catalogue, Explore the Map, and iNaturalist. Results show effective citizen participation, with 1073 wildlife observations and 3043 plant observations. The dashboard provides a user-friendly interface for citizens to tailor their map extent and layers, access surveys, and obtain information on each attribute included in the pop-up by clicking. Analysis on classification of fuel types, ecological communities, endangered wildlife species presence and critical habitat, and scope of human activities can be conducted based on the distribution of data. The dashboard can provide direction for researchers to develop research or contribute to other projects in progress, as well as advocate for natural resource managers to use citizen science data. The study demonstrates the potential for GIS and citizen science to contribute to meaningful discoveries and advancements in areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A platform-agnostic and living geographic information data dictionary for trafficking of wild flora and fauna based on diverse stakeholder input and with the potential to accelerate convergence of information and increase efficacy of interventions.
Facebook
TwitterThe aerial photographs, taken on the 6th of February 1975 at a scale 1: 50 000, were obtained from the Survey of Kenya and were used to generate my original data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analytical Hierarchy Process and GIS was applied in groundwater potential mapping of Tripura, India
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 11.52(USD Billion) |
| MARKET SIZE 2025 | 12.36(USD Billion) |
| MARKET SIZE 2035 | 25.0(USD Billion) |
| SEGMENTS COVERED | Application, Technology, End Use, Deployment Mode, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Rapid technological advancements, Increasing demand for spatial data, Growing applications in various sectors, Rising need for location-based services, Government investments in GIS infrastructure |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Autodesk, Oracle, Intergraph, Hexagon, Trimble, Pitney Bowes, Esri, Microsoft, Here Technologies, Google, Bentley Systems, Supergeo Technologies |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increasing demand for smart cities, Integration with AI and big data, Expansion in agriculture and forestry, Enhanced disaster management solutions, Growth in autonomous vehicle applications |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.3% (2025 - 2035) |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project involved a detailed topographic and land use survey in Center for Water Resources and Environmental Studies, countryside of São Carlos-SP, Brazil, employing advanced technologies like Metashape and Geographic Information Systems (GIS). The survey aimed to accurately map the terrain and assess land use patterns within the specified area. Utilizing Metashape for precise photogrammetry and GIS for spatial analysis, the project provided critical insights into the topographical features and land use. This data is essential for urban planning, environmental management, and future development initiatives in the region.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The triad of host, agent, and environment has become a widely accepted framework for understanding infectious diseases and human health. While modern medicine has traditionally focused on the individual, there is a renewed interest in the role of the environment. Recent studies have shifted from an early-twentieth-century emphasis on individual factors to a broader consideration of contextual factors, including environmental, climatic, and social settings as spatial determinants of health. This shifted focus has been particularly relevant in the context of the COVID-19 pandemic, where the built environment in urban settings is increasingly recognized as a crucial factor influencing disease transmission. However, operationalizing the complexity of associations between the built environment and health for empirical analyses presents significant challenges. This study aims to identify key caveats in the operationalization of spatial determinants of health for empirical analysis and proposes guiding principles for future research. We focus on how the built environment in urban settings was studied in recent literature on COVID-19. Based on a set of criteria, we analyze 23 studies and identify explicit and implicit assumptions regarding the health-related dimensions of the built environment. Our findings highlight the complexities and potential pitfalls, referred to as the ‘spatial trap,' in the current approaches to spatial epidemiology concerning COVID-19. We conclude with recommendations and guiding questions for future studies to avoid falsely attributing a built environment impact on health outcomes and to clarify explicit and implicit assumptions regarding the health-related dimensions.
Facebook
TwitterThis collection supports the map-based concepts found in high school environmental science like speciation, pollution, population ecology, and energy.GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.Find the student worksheets for these GeoInquiries here
Facebook
Twitterhttps://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html
Data for maps and figures in "Global Potential for Harvesting Drinking Water from Air using Solar Energy" in Nature.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides existing generation and technical generation potential of variable renewable energies for 371 local authority districts in Great Britain. The renewables include rooftop photovoltaic, ground-mounted photovoltaic, and onshore wind turbines. The data also include levelized cost of electricity (LCOE), which economically assesses the technical potential. The onshore wind potentials are included in relation to sccenicness, i.e. visual landscape impact. Furthermore, the data reflect different scenarios for land use competition of onshore wind and ground-mounted PV. The compilation of the existing potentials, as well as the methods to determine the technical potentials can be found in the following study: XXX.
Facebook
TwitterDataset description: This dataset contains the information needed to replicate the results presented in the article “Optimizing recruitment in PPGIS – is it worth the time and the costs?”. The data were collected as part of a study investigating recruitment strategies for a large-scale online public participation GIS (PPGIS) platform in coastal areas of Northern Norway. To investigate different recruitment strategies, we reviewed previous environmental PPGIS studies using random sampling and methods to increase response rates. We compared the attained results with our large-scale PPGIS in Northern Norway, where we used both random and volunteer (traditional and social media) sampling. The dataset includes response rates for the 5% of the population (13 regions in Northern Norway) recruited by mail to participate in an online PPGIS survey, response rates from volunteers recruited through traditional and social media, synthetic demographic data, and the code necessary for processing demographic data to obtain the results presented in the article. Original demographic data is not shared due to privacy legislation. We furthermore calculated time spent and costs used for recruiting both randomly sampled persons and volunteers. Article abstract: Public participation GIS surveys use both random and volunteer sampling to recruit people to participate in a self-administered mapping exercise online. From random sampling designs, the participation rate is known to be relatively low, and biased to specific segments (e.g., mid-aged, educated men). Volunteer sampling provides the opportunity to reach a large crowd at reasonable costs, but generally suffers from unknown sampling biases and lower data quality. The low participation rates and the quality of mapping question the validity and generalizability of the results, limiting its use as a democracy tool for enhancing participation in development and planning. We therefore asked: How can we increase participation in online PPGIS surveys? Is it worth the time and the costs? We reviewed environmentally related, online PPGIS surveys (N=51) and analyzed the sampling biases and recruitment strategies utilized in a large scale online PPGIS platform in coastal areas of Northern Norway using both random sampling (16978 invited participants) and volunteer sampling. We found the time, effort, and costs spent to increase participation rates to yield meager results. We discuss the time and cost efficiency of different recruitment methods, as well as the implications of the low participation levels notwithstanding the recruitment methods used.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the authors’ version of the work. It is based on a poster presented at the Wageningen Conference on Applied Soil Science, http://www.wageningensoilmeeting.wur.nl/UK/ Cite as: Bosco, C., de Rigo, D., Dewitte, O., Montanarella, L., 2011. Towards the reproducibility in soil erosion modeling: a new Pan-European soil erosion map. Wageningen Conference on Applied Soil Science “Soil Science in a Changing World”, 18 - 22 September 2011, Wageningen, The Netherlands. Author’s version DOI:10.6084/m9.figshare.936872 arXiv:1402.3847
Towards the reproducibility in soil erosion modeling:a new Pan-European soil erosion map
Claudio Bosco ¹, Daniele de Rigo ¹ ² , Olivier Dewitte ¹, Luca Montanarella ¹ ¹ European Commission, Joint Research Centre, Institute for Environment and Sustainability,Via E. Fermi 2749, I-21027 Ispra (VA), Italy² Politecnico di Milano, Dipartimento di Elettronica e Informazione,Via Ponzio 34/5, I-20133 Milano, Italy
Soil erosion by water is a widespread phenomenon throughout Europe and has the potentiality, with his on-site and off-site effects, to affect water quality, food security and floods. Despite the implementation of numerous and different models for estimating soil erosion by water in Europe, there is still a lack of harmonization of assessment methodologies. Often, different approaches result in soil erosion rates significantly different. Even when the same model is applied to the same region the results may differ. This can be due to the way the model is implemented (i.e. with the selection of different algorithms when available) and/or to the use of datasets having different resolution or accuracy. Scientific computation is emerging as one of the central topic of the scientific method, for overcoming these problems there is thus the necessity to develop reproducible computational method where codes and data are available. The present study illustrates this approach. Using only public available datasets, we applied the Revised Universal Soil loss Equation (RUSLE) to locate the most sensitive areas to soil erosion by water in Europe. A significant effort was made for selecting the better simplified equations to be used when a strict application of the RUSLE model is not possible. In particular for the computation of the Rainfall Erosivity factor (R) the reproducible research paradigm was applied. The calculation of the R factor was implemented using public datasets and the GNU R language. An easily reproducible validation procedure based on measured precipitation time series was applied using MATLAB language. Designing the computational modelling architecture with the aim to ease as much as possible the future reuse of the model in analysing climate change scenarios is also a challenging goal of the research.
References [1] Rusco, E., Montanarella, L., Bosco, C., 2008. Soil erosion: a main threats to the soils in Europe. In: Tóth, G., Montanarella, L., Rusco, E. (Eds.), Threats to Soil Quality in Europe. No. EUR 23438 EN in EUR - Scientific and Technical Research series. Office for Official Publications of the European Communities, pp. 37-45 [2] Casagrandi, R. and Guariso, G., 2009. Impact of ICT in Environmental Sciences: A citation analysis 1990-2007. Environmental Modelling & Software 24 (7), 865-871. DOI:10.1016/j.envsoft.2008.11.013 [3] Stallman, R. M., 2005. Free community science and the free development of science. PLoS Med 2 (2), e47+. DOI:10.1371/journal.pmed.0020047 [4] Waldrop, M. M., 2008. Science 2.0. Scientific American 298 (5), 68-73. DOI:10.1038/scientificamerican0508-68 [5] Heineke, H. J., Eckelmann, W., Thomasson, A. J., Jones, R. J. A., Montanarella, L., and Buckley, B., 1998. Land Information Systems: Developments for planning the sustainable use of land resources. Office for Official Publications of the European Communities, Luxembourg. EUR 17729 EN [6] Farr, T. G., Rosen, P A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Review of Geophysics 45, RG2004, DOI:10.1029/2005RG000183 [7] Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M., 2008. A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research 113, (D20) D20119+ DOI:10.1029/2008jd010201 [8] Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook 703. US Dept Agric., Agr. Handbook, 703 [9] Bosco, C., Rusco, E., Montanarella, L., Panagos, P., 2009. Soil erosion in the alpine area: risk assessment and climate change. Studi Trentini di scienze naturali 85, 119-125 [10] Bosco, C., Rusco, E., Montanarella, L., Oliveri, S., 2008. Soil erosion risk assessment in the alpine area according to the IPCC scenarios. In: Tóth, G., Montanarella, L., Rusco, E. (Eds.), Threats to Soil Quality in Europe. No. EUR 23438 EN in EUR - Scientific and Technical Research series. Office for Official Publications of the European Communities, pp. 47-58 [11] de Rigo, D. and Bosco, C., 2011. Architecture of a Pan-European Framework for Integrated Soil Water Erosion Assessment. IFIP Advances in Information and Communication Technology 359 (34), 310-31. DOI:10.1007/978-3-642-22285-6_34 [12] Bosco, C., de Rigo, D., Dewitte, O., and Montanarella, L., 2011. Towards a Reproducible Pan-European Soil Erosion Risk Assessment - RUSLE. Geophys. Res. Abstr. 13, 3351 [13] Bollinne, A., Laurant, A., and Boon, W., 1979. L’érosivité des précipitations a Florennes. Révision de la carte des isohyétes et de la carte d’erosivite de la Belgique. Bulletin de la Société géographique de Liége 15, 77-99 [14] Ferro, V., Porto, P and Yu, B., 1999. A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrolog. Sci. J. 44 (1), 3-24. DOI:10.1080/02626669909492199 [15] de Santos Loureiro, N. S. and de Azevedo Coutinho, M., 2001. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J. Hydrol. 250, 12-18. DOI:10.1016/S0022-1694(01)00387-0 [16] Rogler, H., and Schwertmann, U., 1981. Erosivität der Niederschläge und Isoerodentkarte von Bayern (Rainfall erosivity and isoerodent map of Bavaria). Zeitschrift fur Kulturtechnik und Flurbereinigung 22, 99-112 [17] Nearing, M. A., 1997. A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J. 61 (3), 917-919. DOI:10.2136/sssaj1997.03615995006100030029x [18] Morgan, R. P C., 2005. Soil Erosion and Conservation, 3rd ed. Blackwell Publ., Oxford, pp. 304 [19] Šúri, M., Cebecauer, T., Hofierka, J., Fulajtár, E., 2002. Erosion Assessment of Slovakia at regional scale using GIS. Ecology 21 (4), 404-422 [20] Cebecauer, T. and Hofierka, J., 2008. The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology 98, 187-198. DOI:10.1016/j.geomorph.2006.12.035 [21] Poesen, J., Torri, D., and Bunte, K., 1994. Effects of rock fragments on soil erosion by water at different spatial scales: a review. Catena 23, 141-166. DOI:10.1016/0341-8162(94)90058-2 [22] Wischmeier, W. H., 1959. A rainfall erosion index for a universal Soil-Loss Equation. Soil Sci. Soc. Amer. Proc. 23, 246-249 [23] Iverson, K. E., 1980. Notation as a tool of thought. Commun. ACM 23 (8), 444-465. DOI:10.1145/358896.358899 [24] Quarteroni, A., Saleri, F., 2006. Scientific Computing with MATLAB and Octave. Texts in Computational Science and Engineering. Milan, Springer-Verlag [25] The MathWorks, 2011. MATLAB. http://www.mathworks.com/help/techdoc/ref/ [26] Eaton, J. W., Bateman, D., and Hauberg, S., 2008. GNU Octave Manual Version 3. A high-level interactive language for numerical computations. Network Theory Limited, ISBN: 0-9546120-6-X [27] de Rigo, D., 2011. Semantic Array Programming with Mastrave - Introduction to Semantic Computational Modeling. The Mastrave project. http://mastrave.org/doc/MTV-1.012-1 [28] de Rigo, D., (exp.) 2012. Semantic array programming for environmental modelling: application of the Mastrave library. In prep. [29] Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P.: Modelling Soil Erosion at European Scale. Towards Harmonization and Reproducibility. In prep. [30] R Development Core Team, 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing. [31] Stallman, R. M., 2009. Viewpoint: Why “open source” misses the point of free software. Commun. ACM 52 (6), 31–33. DOI:10.1145/1516046.1516058 [32] de Rigo, D. 2011. Multi-dimensional weighted median: the module "wmedian" of the Mastrave modelling library. Mastrave project technical report. http://mastrave.org/doc/mtv_m/wmedian [33] Shakesby, R. A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105 (3-4), 71-100. DOI:10.1016/j.earscirev.2011.01.001 [34] Zuazo, V. H., Pleguezuelo, C. R., 2009. Soil-Erosion and runoff prevention by plant covers: A review. In: Lichtfouse, E., Navarrete, M., Debaeke, P Véronique, S., Alberola, C. (Eds.), Sustainable Agriculture. Springer Netherlands, pp. 785-811. DOI:10.1007/978-90-481-2666-8_48
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
GIS dataset with TIFFs and tsw files
Facebook
TwitterExplore water pollution and its impact on marine life.THE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Teachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterTHE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:• Population dynamics • Megacities • Down to the last drop • Dead zones (water pollution) • The Beagle’s Path • Primary productivity • Tropical Deforestation • Marine debris • El Nino (and climate) • Slowing malaria • Altered biomes • Spinning up wind power • Resource consumption and wealthTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterTHE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:• Population dynamics • Megacities • Down to the last drop • Dead zones (water pollution) • The Beagle’s Path • Primary productivity • Tropical Deforestation • Marine debris • El Nino (and climate) • Slowing malaria • Altered biomes • Spinning up wind power • Resource consumption and wealthTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterThis dataset includes maps produced from the Australian Antarctic Data Centre GIS for use in environmental management of the 'old' Casey station tip site and the abandoned Wilkes station site: a map of the Windmill Islands showing the locations of Casey and Wilkes, contour maps of Casey and Wilkes and a map showing the water flow directions at Casey. The maps were used for locating contaminated areas and identifying the processes involved in contamination spread. Also included in the dataset is the GIS topographic and derived data used to create the maps.
Facebook
TwitterDataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...