The share of organizations using social media analytics in market research worldwide increased overall from 2014 to 2020, despite some fluctuation. During the 2020 survey, 57 percent of respondents stated they used social media analytics as a research method.
Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.
The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: -
· Prevalence of computers and access to the Internet. · Study the penetration and purpose of Technology use.
Palestine (West Bank and Gaza Strip) , type of locality (Urban, Rural, Refugee Camps) and governorate
Household. Person 10 years and over .
All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.
Sample survey data [ssd]
Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.
Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.
Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:
Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.
Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).
-
Face-to-face [f2f]
The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.
Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.
Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.
Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.
Data Entry: The data entry process started on 8 May 2014 and ended on 23 June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.
Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
Response Rates= 79%
There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.
Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:
Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.
Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.
Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.
Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.
This statistic shows the global revenue for enterprise application software from 2017 to 2028. The source estimates that global revenue for enterprise application software will reach 662 billion U.S. dollars in 2028.
As of January 2025, around 13.7 percent of paid iOS apps admitted collecting data from users engaging with their mobile products. In comparison, approximately 53 percent of free-to-download iOS apps reported they collect private data from users worldwide, while approximately 86 percent of paid apps have not declared whether they collect users' privacy data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Methods are presented for detecting differential expression using statistical hypothesis testing methods including analysis of variance (ANOVA). Practicalities of experimental design, power, and sample size are discussed. Methods for multiple testing correction and their application are described. Instructions for running typical analyses are given in the R programming environment. R code and the sample data set used to generate the examples are available at http://microarray.cpmc.columbia.edu/pavlidis/pub/aovmethods/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table provides an overview of the key figures on health and care available on StatLine. All figures are taken from other tables on StatLine, either directly or through a simple conversion. In the original tables, breakdowns by characteristics of individuals or other variables are possible. The period after the year of review before data become available differs between the data series. The number of exam passes/graduates in year t is the number of persons who obtained a diploma in school/study year starting in t-1 and ending in t.
Data available from: 2001
Status of the figures: 2024: The available figures are definite. 2023: Most available figures are definite Figures are provisional for: - perinatal mortality at pregnancy duration at least 24 weeks; - diagnoses known to the general practitioner; - supplied drugs; - AWBZ/Wlz-funded long term care; - persons employed in health and welfare; - persons employed in healthcare; - Mbo health care graduates; - Hbo nursing graduates / medicine graduates (university); - expenditures on health and welfare; - average distance to facilities. 2022: Most available figures are definite, figures are provisional for: - hospital admissions by some diagnoses; - physicians and nurses employed in care; - persons employed in health and welfare; - persons employed in healthcare; - expenditures on health and welfare; - profitability and operating results at institutions. 2021: Most available figures are definite, figures are provisional for: - expenditures on health and welfare. 2020 and earlier: All available figures are definite.
Changes as of 18 december 2024: - Distance to facilities: the figures withdrawn on 5 June have been replaced (unchanged). - Youth care: the previously published final results for 2021 and 2022 have been adjusted due to improvements in the processing. - Due to a revision of the statistics Expenditure on health and welfare 2021, figures for expenditure on health and welfare care have been replaced from 2021 onwards. - Due to the revision of the National Accounts, the figures on persons employed in health and welfare have been replaced for all years. - AWBZ/Wlz-funded long term care: from 2015, the series Wlz residential care including total package at home has been replaced by total Wlz care. This series fits better with the chosen demarcation of indications for Wlz care.
More recent figures have been added for: - crude birth rate; - live births to teenage mothers; - causes of death; - perinatal mortality at pregnancy duration at least 24 weeks; - life expectancy in perceived good health; - diagnoses known to the general practitioner; - supplied drugs; - AWBZ/Wlz-funded long term care; - youth care; - persons employed in health and welfare; - persons employed in healthcare; - expenditures on health and welfare; - average distance to facilities.
When will new figures be published? New figures will be published in July 2025.
All states (including the District of Columbia) are required to provide data to The Centers for Medicare & Medicaid Services (CMS) on a range of Medicaid and Children’s Health Insurance Program (CHIP) indicators related to key application, eligibility, enrollment and call center processes. These data reflect enrollment activity for all populations receiving comprehensive Medicaid and CHIP benefits in all states, as well as state program performance. States submit this data via the Performance Indicator dataset. Further information about this dataset is available at: https://www.medicaid.gov/medicaid/national-medicaid-chip-program-information/medicaid-chip-enrollment-data/performance-indicator-technical-assistance/index.html.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The S3 dataset contains the behavior (sensors, statistics of applications, and voice) of 21 volunteers interacting with their smartphones for more than 60 days. The type of users is diverse, males and females in the age range from 18 until 70 have been considered in the dataset generation. The wide range of age is a key aspect, due to the impact of age in terms of smartphone usage. To generate the dataset the volunteers installed a prototype of the smartphone application in on their Android mobile phones.All attributes of the different kinds of data are writed in a vector. The dataset contains the fellow vectors: Sensors: This type of vector contains data belonging to smartphone sensors (accelerometer and gyroscope) that has been acquired in a given windows of time. Each vector is obtained every 20 seconds, and the monitored features are:- Average of accelerometer and gyroscope values.- Maximum and minimum of accelerometer and gyroscope values.- Variance of accelerometer and gyroscope values.- Peak-to-peak (max-min) of X, Y, Z coordinates.- Magnitude for gyroscope and accelerometer.Statistics: These vectors contain data about the different applications used by the user recently. Each vector of statistics is calculated every 60 seconds and contains : - Foreground application counters (number of different and total apps) for the last minute and the last day.- Most common app ID and the number of usages in the last minute and the last day. - ID of the currently active app. - ID of the last active app prior to the current one.- ID of the application most frequently utilized prior to the current application. - Bytes transmitted and received through the network interfaces. Voice: This kind of vector is generated when the microphone is active in a call o voice note. The speaker vector is an embedding, extracted from the audio, and it contains information about the user's identity. This vector, is usually named "x-vector" in the Speaker Recognition field, and it is calculated following the steps detailed in "egs/sitw/v2" for the Kaldi library, with the models available for the extraction of the embedding. A summary of the details of the collected database.- Users: 21 - Sensors vectors: 417.128 - Statistics app's usage vectors: 151.034 - Speaker vectors: 2.720 - Call recordings: 629 - Voice messages: 2.091
In 2011, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 5th version 2011 Cross-Sectional User Database as released in July 2015 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United Kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
https://datacatalog1.worldbank.org/public-licenses?fragment=cchttps://datacatalog1.worldbank.org/public-licenses?fragment=cc
National statistical systems are facing significant challenges. These challenges arise from increasing demands for high quality and trustworthy data to guide decision making, coupled with the rapidly changing landscape of the data revolution. To help create a mechanism for learning amongst national statistical systems, the World Bank has developed improved Statistical Performance Indicators (SPI) to monitor the statistical performance of countries. The SPI focuses on five key dimensions of a country’s statistical performance: (i) data use, (ii) data services, (iii) data products, (iv) data sources, and (v) data infrastructure. This will replace the Statistical Capacity Index (SCI) that the World Bank has regularly published since 2004.
The SPI focus on five key pillars of a country’s statistical performance: (i) data use, (ii) data services, (iii) data products, (iv) data sources, and (v) data infrastructure. The SPI are composed of more than 50 indicators and contain data for 186 countries. This set of countries covers 99 percent of the world population. The data extend from 2016-2023, with some indicators going back to 2004.
For more information, consult the academic article published in the journal Scientific Data. https://www.nature.com/articles/s41597-023-01971-0.
Historical Employment Statistics 1990 - current. The Current Employment Statistics (CES) more information program provides the most current estimates of nonfarm employment, hours, and earnings data by industry (place of work) for the nation as a whole, all states, and most major metropolitan areas. The CES survey is a federal-state cooperative endeavor in which states develop state and sub-state data using concepts, definitions, and technical procedures prescribed by the Bureau of Labor Statistics (BLS). Estimates produced by the CES program include both full- and part-time jobs. Excluded are self-employment, as well as agricultural and domestic positions. In Connecticut, more than 4,000 employers are surveyed each month to determine the number of the jobs in the State. For more information please visit us at http://www1.ctdol.state.ct.us/lmi/ces/default.asp.
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
Statistics illustrates the import volume of Products n.e.c. in heading 2404, intended for the intake of nicotine into the human body, for oral application in Holy See from 2007 to 2024 by trade partner.
In 2019, 40 percent of organizations reported that they experience functionality gaps in applying talent management. During the same survey, 56 percent of organizations stated that workforce management meets their business needs most of the time.
This is an Experimental Official Statistics publication produced by HM Revenue and Customs (HMRC) using HMRC’s Coronavirus Job Retention Scheme claims data.
This publication covers all Coronavirus Job Retention Scheme claims submitted by employers from the start of the scheme up to 31 March 2021. It includes statistics on the claims themselves and the jobs supported.
Data from HMRC’s Real Time Information (RTI) system has been matched with Coronavirus Job Retention Scheme data to produce analysis of claims by:
For more information on Experimental Statistics and governance of statistics produced by public bodies please see the https://uksa.statisticsauthority.gov.uk/about-the-authority/uk-statistical-system/types-of-official-statistics" class="govuk-link">UK Statistics Authority website.
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
Statistics illustrates consumption, production, prices, and trade of Products n.e.c. in heading 2404, intended for the intake of nicotine into the human body, by ways other than inhalation, and other than oral or transdermal application in Isle of Man from 2007 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ICA250 - Individuals aged 16 years and over who use free apps and issues encountered when deleting/closing free apps. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Individuals aged 16 years and over who use free apps and issues encountered when deleting/closing free apps...
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
Statistics illustrates consumption, production, prices, and trade of Products n.e.c. in heading 2404, intended for the intake of nicotine into the human body, by ways other than inhalation, and other than oral or transdermal application in Cote d'Ivoire from 2007 to 2024.
The Utility Energy Registry (UER) is a database platform that provides streamlined public access to aggregated community-scale energy data. The UER is intended to promote and facilitate community-based energy planning and energy use awareness and engagement. On April 19, 2018, the New York State Public Service Commission (PSC) issued the Order Adopting the Utility Energy Registry under regulatory CASE 17-M-0315. The order requires utilities and CCA administrators under its regulation to develop and report community energy use data to the UER. This dataset includes electricity and natural gas usage data reported by utilities at the county level. Other UER datasets include energy use data reported at the city, town, and village, and ZIP code level. Data in the UER can be used for several important purposes such as planning community energy programs, developing community greenhouse gas emissions inventories, and relating how certain energy projects and policies may affect a particular community. It is important to note that the data are subject to privacy screening and fields that fail the privacy screen are withheld. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
Statistics illustrates consumption, production, prices, and trade of Products n.e.c. in heading 2404, intended for the intake of nicotine into the human body, by ways other than inhalation, and other than oral or transdermal application in Bosnia and Herzegovina from 2007 to 2024.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Animal mortality on roads is one of the main concerns on wildlife conservation. Due to their habitat requirements, amphibians became one of the most commonly road-killed group and this may affect their population viability. Implementation of mitigation measures may overcome the problem. However, due to the extensive road network, their application is very expensive and required a better understanding in where they should be implemented. Mortality hotspots can be identified as clusters of road-killed records) using GIS (Geographic Information Systems). Although there are several statistical methods available, it is lacking a comparison analysis of them in order to understand their pros and contras. The aim of this study was to analyse possible differences between global, multi-scale and local spatial analysis methods in defining hotspots using amphibian road fatality data collected in northern Portugal country roads. We calculated the Nearest neighbor index, Morans I and Getis-ord General in order to compare the global clustering of points in seven sampled roads, and three were identified as clustered. We used Ripley K-function, Ripley L-function and F function to calculate the best scale for Malo's equation and Kernel density analysis in detecting hotspots and we compared their detection performance with Local Indicators of Association (LISA) (i.e Local Moran's I and Getis-ord Gi). Three different GIS software applications were used: ArcGis, Quantum GIS with R (opensource) and GeoDa (opensource). Results showed the importance of using multidistance spatial cluster analysis to define the best scale for hotspot detection with Malo´s equation and Kernel density analysis. Here we also suggest the advantages of Local Indicators of Association (LISA) for detecting clusters with the contribution of each individual observation (Local Morans I and Getis-ord Gi).
The share of organizations using social media analytics in market research worldwide increased overall from 2014 to 2020, despite some fluctuation. During the 2020 survey, 57 percent of respondents stated they used social media analytics as a research method.