Facebook
TwitterDataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A platform-agnostic and living geographic information data dictionary for trafficking of wild flora and fauna based on diverse stakeholder input and with the potential to accelerate convergence of information and increase efficacy of interventions.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 11.52(USD Billion) |
| MARKET SIZE 2025 | 12.36(USD Billion) |
| MARKET SIZE 2035 | 25.0(USD Billion) |
| SEGMENTS COVERED | Application, Technology, End Use, Deployment Mode, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Rapid technological advancements, Increasing demand for spatial data, Growing applications in various sectors, Rising need for location-based services, Government investments in GIS infrastructure |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Autodesk, Oracle, Intergraph, Hexagon, Trimble, Pitney Bowes, Esri, Microsoft, Here Technologies, Google, Bentley Systems, Supergeo Technologies |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increasing demand for smart cities, Integration with AI and big data, Expansion in agriculture and forestry, Enhanced disaster management solutions, Growth in autonomous vehicle applications |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.3% (2025 - 2035) |
Facebook
TwitterProof web map for GeoInquiries Advanced Environmental Science lesson on Tropical Deforestation.THE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:• Population dynamics • Megacities • Down to the last drop • Dead zones (water pollution) • The Beagle’s Path • Primary productivity • Tropical Deforestation • Marine debris • El Nino (and climate) • Slowing malaria • Altered biomes • Spinning up wind power • Resource consumption and wealthTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterThis study focuses on the use of citizen science and GIS tools for collecting and analyzing data on Rose Swanson Mountain in British Columbia, Canada. While several organizations collect data on wildlife habitats, trail mapping, and fire documentation on the mountain, there are few studies conducted on the area and citizen science is not being addressed. The study aims to aggregate various data sources and involve citizens in the data collection process using ArcGIS Dashboard and ArcGIS Survey 123. These GIS tools allow for the integration and analysis of different kinds of data, as well as the creation of interactive maps and surveys that can facilitate citizen engagement and data collection. The data used in the dashboard was sourced from BC Data Catalogue, Explore the Map, and iNaturalist. Results show effective citizen participation, with 1073 wildlife observations and 3043 plant observations. The dashboard provides a user-friendly interface for citizens to tailor their map extent and layers, access surveys, and obtain information on each attribute included in the pop-up by clicking. Analysis on classification of fuel types, ecological communities, endangered wildlife species presence and critical habitat, and scope of human activities can be conducted based on the distribution of data. The dashboard can provide direction for researchers to develop research or contribute to other projects in progress, as well as advocate for natural resource managers to use citizen science data. The study demonstrates the potential for GIS and citizen science to contribute to meaningful discoveries and advancements in areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project involved a detailed topographic and land use survey in Center for Water Resources and Environmental Studies, countryside of São Carlos-SP, Brazil, employing advanced technologies like Metashape and Geographic Information Systems (GIS). The survey aimed to accurately map the terrain and assess land use patterns within the specified area. Utilizing Metashape for precise photogrammetry and GIS for spatial analysis, the project provided critical insights into the topographical features and land use. This data is essential for urban planning, environmental management, and future development initiatives in the region.
Facebook
TwitterThe aerial photographs, taken on the 6th of February 1975 at a scale 1: 50 000, were obtained from the Survey of Kenya and were used to generate my original data.
Facebook
TwitterThis collection supports the map-based concepts found in high school environmental science like speciation, pollution, population ecology, and energy.GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.Find the student worksheets for these GeoInquiries here
Facebook
TwitterDataset description: This dataset contains the information needed to replicate the results presented in the article “Optimizing recruitment in PPGIS – is it worth the time and the costs?”. The data were collected as part of a study investigating recruitment strategies for a large-scale online public participation GIS (PPGIS) platform in coastal areas of Northern Norway. To investigate different recruitment strategies, we reviewed previous environmental PPGIS studies using random sampling and methods to increase response rates. We compared the attained results with our large-scale PPGIS in Northern Norway, where we used both random and volunteer (traditional and social media) sampling. The dataset includes response rates for the 5% of the population (13 regions in Northern Norway) recruited by mail to participate in an online PPGIS survey, response rates from volunteers recruited through traditional and social media, synthetic demographic data, and the code necessary for processing demographic data to obtain the results presented in the article. Original demographic data is not shared due to privacy legislation. We furthermore calculated time spent and costs used for recruiting both randomly sampled persons and volunteers. Article abstract: Public participation GIS surveys use both random and volunteer sampling to recruit people to participate in a self-administered mapping exercise online. From random sampling designs, the participation rate is known to be relatively low, and biased to specific segments (e.g., mid-aged, educated men). Volunteer sampling provides the opportunity to reach a large crowd at reasonable costs, but generally suffers from unknown sampling biases and lower data quality. The low participation rates and the quality of mapping question the validity and generalizability of the results, limiting its use as a democracy tool for enhancing participation in development and planning. We therefore asked: How can we increase participation in online PPGIS surveys? Is it worth the time and the costs? We reviewed environmentally related, online PPGIS surveys (N=51) and analyzed the sampling biases and recruitment strategies utilized in a large scale online PPGIS platform in coastal areas of Northern Norway using both random sampling (16978 invited participants) and volunteer sampling. We found the time, effort, and costs spent to increase participation rates to yield meager results. We discuss the time and cost efficiency of different recruitment methods, as well as the implications of the low participation levels notwithstanding the recruitment methods used.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analytical Hierarchy Process and GIS was applied in groundwater potential mapping of Tripura, India
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Maps of California's Wildland Urban Interface (WUI) generated using the Time Step Moving Window (TSMW) method outlined in the paper "Remapping California's Wildland Urban Interface: A Property-Level Time-Space Framework, 2000-2020".
Please cite the original paper:
Berg, Aleksander K, Dylan S. Connor, Peter Kedron, and Amy E. Frazier. 2024. “Remapping California’s Wildland Urban Interface: A Property-Level Time-Space Framework, 2000–2020.” Applied Geography 167 (June): 103271. https://doi.org/10.1016/j.apgeog.2024.103271.
WUI maps were generated using Zillow ZTRAX parcel level attributes joined with FEMA USA Structures building footprints and the National Land Cover Database (NLCD).
All files are geotiff rasters with WUI areas mapped at a ~30m resolution. A raster value of null indicates not WUI, raster value of 1 indicates intermix WUI, and a raster value of 2 indicates interface WUI.
Three WUI maps were generated using structures built on of before the years indicated below:
2000 - "CA_WUI_2000.tif"
2010 - "CA_WUI_2010.tif"
2020 - "CA_WUI_2020.tif"
Acknowledgments -
We thank our reviewers and editors for helping us to improve the manuscript. We gratefully acknowledge access to the Zillow Transaction and Assessment Dataset (ZTRAX) through a data use agreement between the University of Colorado Boulder, Arizona State University, and Zillow Group, Inc. More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the author(s) and do not reflect the position of Zillow Group. Support by Zillow Group Inc. is acknowledged. We thank Johannes Uhl and Stefan Leyk for their great work in preparing the original dataset. For feedback and comments, we also thank Billie Lee Turner II, Sharmistha Bagchi-Sen, and participants at the 2022 Global Conference on Economic Geography, the 2022 Young Economic Geographers Network meeting, and the 2023 annual meeting of the American Association of Geographers. Funding for our work has been provided by Arizona State University's Institute of Social Science Research (ISSR) Seed Grant Initiative. Additional funding was provided through the Humans, Disasters, and the Built Environment program of the National Science Foundation, Award Number 1924670 to the University of Colorado Boulder, the Institute of Behavioral Science, Earth Lab, the Cooperative Institute for Research in Environmental Sciences, the Grand Challenge Initiative and the Innovative Seed Grant program at the University of Colorado Boulder as well as the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Numbers R21 HD098717 01A1 and P2CHD066613.
Facebook
TwitterExplore water pollution and its impact on marine life.THE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Teachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS dataset is showing the land use and land cover of Central Germany on a 500x500 m grid. Central Germany covers the area of the federal states of Saxony, Saxony-Anhalt and Thuringia. The data is based on the Corine Land Cover (CLC) map, the German Soil Map BUEK, Natural protection areas of the BfN and statistics. For further information please see the metadata Excel sheet as well as Wochele, S., Priess, J., Thrän, D., O’Keeffe, S., (2014): Crop allocation model “CRAM” - an approach for dealing with biomass supply from arable land as part of a life cycle inventory. 22nd European Biomass Conference and Exhibition, CCH -Congress Center Hamburg, 24-25 June 2014 EU BC&E Proceedings 2014, ETA-Florence Renewable Energies, Florence. doi: 10.5071/22ndEUBCE2014-1AO.5.4
Facebook
TwitterThis dataset includes maps produced from the Australian Antarctic Data Centre GIS for use in environmental management of the 'old' Casey station tip site and the abandoned Wilkes station site: a map of the Windmill Islands showing the locations of Casey and Wilkes, contour maps of Casey and Wilkes and a map showing the water flow directions at Casey. The maps were used for locating contaminated areas and identifying the processes involved in contamination spread. Also included in the dataset is the GIS topographic and derived data used to create the maps.
Facebook
TwitterTHE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:• Population dynamics • Megacities • Down to the last drop • Dead zones (water pollution) • The Beagle’s Path • Primary productivity • Tropical Deforestation • Marine debris • El Nino (and climate) • Slowing malaria • Altered biomes • Spinning up wind power • Resource consumption and wealthTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterLand cover has been interpreted from Satellite images and field checked, other information has been digitized from topographic maps
Members informations:
Attached Vector(s):
MemberID: 1
Vector Name: Land use
Source Map Name: SPOT Pan
Source Map Scale: 50000
Source Map Date: 1989/90
Projection: Polyconic on Modified Everest Ellipsoid
Feature_type: polygon
Vector
Land use maps, interpreted from SPOT panchromatic imagery and field
checked (18 classes)
Members informations:
Attached Vector(s):
MemberID: 2
Vector Name: Administrative boundaries
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: polygon
Vector
Dzongkhags (Districts) and Gewogs
Members informations:
Attached Vector(s):
MemberID: 3
Vector Name: Roads
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: lines
Vector
Road network
Attached Report(s)
Member ID: 4
Report Name: Atlas of Bhutan
Report Authors: Land use planning section
Report Publisher: Ministry of Agriculture, Thimpu
Report Date: 1997-06-01
Report
Land cover (1:250000) and area statistics of 20 Dzongkhags
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides existing generation and technical generation potential of variable renewable energies for 371 local authority districts in Great Britain. The renewables include rooftop photovoltaic, ground-mounted photovoltaic, and onshore wind turbines. The data also include levelized cost of electricity (LCOE), which economically assesses the technical potential. The onshore wind potentials are included in relation to sccenicness, i.e. visual landscape impact. Furthermore, the data reflect different scenarios for land use competition of onshore wind and ground-mounted PV. The compilation of the existing potentials, as well as the methods to determine the technical potentials can be found in the following study: XXX.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore the concepts, principles, and practices of acquiring, storing, analyzing, displaying, and using geospatial data. Additionally, you will investigate the science behind geographic information systems and the techniques and methods GIS scientists and professionals use to answer questions with a spatial component. In the lab section, you will become proficient with the ArcGIS Pro software package. This course will prepare you to take more advanced geospatial science courses. You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises, assignments, and less guided challenges. Please see the sequencing document for our suggestions as to the order in which to work through the material. To aid in working through the lecture modules, we have provided PDF versions of the lectures with the slide notes included. This course makes use of the ArcGIS Pro software package from the Environmental Systems Research Institute (ESRI), and directions for installing the software have also been provided. If you are not a West Virginia University student, you can still complete the labs, but you will need to obtain access to the software on your own.
Facebook
TwitterTo address the global challenge of reducing greenhouse gas emissions contributing to climate change, it is essential to explore innovative, renewable, and sustainable energy solutions. Bioenergy, derived from biological sources, plays a vital role by providing renewable options for heat, electricity, and vehicle fuel. Biofuels from food crops like sugarcane and cassava demonstrate the potential of agricultural products for energy generation, while jatropha is cultivated primarily for oil. This learning activity focuses on land suitability mapping for these selected crops in Florida, incorporating criteria such as temperature, rainfall, soil type, soil pH, and topography. The analysis evaluates the land requirements of food and energy crops within the Food-Energy-Water (FEW) nexus framework, addressing potential land-use conflicts. Geographic Information Systems (GIS) are employed to identify optimal regions for energy crop cultivation, promoting sustainable practices that balance food security, water conservation, and renewable energy production. The modules are developed and designed for undergraduate students, particularly those enrolled in any of courses such as environmental science, GIS, natural resource management, agricultural science and remote sensing. Students will apply GIS and remote sensing techniques to analyze interactions among food, energy, and water resources, focusing on resilient crops. The activity incorporates the 4DEE framework – Core Ecological Concepts, Ecological Practices, Human-Environment Interactions, and Cross-Cutting Themes to enhance understanding of the FEW nexus. Through hands-on projects addressing real-world ecological challenges, students will develop critical skills in geospatial data analysis, data interpretation, and ethical considerations, preparing them for sustainable resource management. Likewise on part of the instructors, the activity is designed for those with intermediate to advanced GIS expertise, particularly in ArcGIS Pro and Google Earth Engine for spatial analysis and a basic understanding and application of the Food-Energy-Water (FEW) Nexus to guide students in making informed land-use decisions that support sustainable development goals.
Facebook
TwitterThis research explores the innovative use of a 3D gaming engine, Minetest, for visualizing changes in canopy cover change at the University of British Columbia (UBC) campus, addressing the pressing challenge of urban expansion on green spaces. We compared and visualized canopy height change for UBC campus in both 2D traditional environment and 3D gaming engine environment and we revealed a consistency between the spatial patterns of canopy cover change observed in both environments. Our findings indicate 3D environment provided multi-dimensional insights into canopy cover changes, offering decision-makers more straightforward and transparent insight than traditional maps can achieve in an immersive and interactive environment. We observed there is a significant change in canopy cover with 25 percent loss in total where Wesbrook community area experienced the most significant canopy cover loss in past 5 years due to rapid urban development. Our findings goes beyond merely presenting geographic maps and attributes from a 3D voxel game perspective. Instead, it will serve as a useful tool and references for UBC decision makers and planners to inform management plan on the pathway of building a green, well-planned community.
Facebook
TwitterDataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...