27 datasets found
  1. Meta data and supporting documentation

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Meta data and supporting documentation [Dataset]. https://catalog.data.gov/dataset/meta-data-and-supporting-documentation
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    We include a description of the data sets in the meta-data as well as sample code and results from a simulated data set. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The R code is available on line here: https://github.com/warrenjl/SpGPCW. Format: Abstract The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publicly available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. File format: R workspace file. Metadata (including data dictionary) • y: Vector of binary responses (1: preterm birth, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate). This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  2. D

    Replication Data for: HOPEVOL, appropriate hospice care in the Netherlands

    • dataverse.nl
    pdf
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de rlien de Graaf; de rlien de Graaf; Saskia Teunissen; Saskia Teunissen (2022). Replication Data for: HOPEVOL, appropriate hospice care in the Netherlands [Dataset]. http://doi.org/10.34894/38TWWA
    Explore at:
    pdf(173439), pdf(926658), pdf(778258)Available download formats
    Dataset updated
    Apr 11, 2022
    Dataset provided by
    DataverseNL
    Authors
    de rlien de Graaf; de rlien de Graaf; Saskia Teunissen; Saskia Teunissen
    License

    https://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/38TWWAhttps://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/38TWWA

    Area covered
    Netherlands
    Description

    The quantitative and qualitative datasets comprise data from the HOPEVOL study a national study of appropriate hospice care in the Netherlands. This study contains multiple datasets 1) HOPEVOL1 and HOPEVOL2study: The raw data from two dataset were merged to one complete set containing data from 803 patients admitted to hospices in the Netherlands in 2017 and 2018. In total 266 variables were collected from all patients. 2) HOPEVOL1 en HOPEVOL2 report The datasets comprises data from 204 patients contributed to an indepth symptom management practices overview, containing information on practices of 14 symptoms and use of three PROMS in total 296 variables 3) A data dictionary of all data collected in HOPEVOL1 and HOPEVOL2 in Dutch 4) HOPEVOL_hospice_characteristics: comprises information of structure and process of care of 42 hospices in 149 variables. 5) Dignity_caregiver: qualitative data, transcriptions of focusgroups interviews with caregivers working in hospices in the Netherlands discussing dignity and dignity conserving care practices in daily hospice care. 6) Dignity_patient: qualitative data: transcriptions of of interviews with patients exploring the meaning of dignity and dignity conserving care form the patient perspective. 7) Dignity_patient_dignity_inventory; contains patient characteristics, PDI outcomes and USD4D outcomes of 99 patients admitted to hospices in the Netherlands in 2021.

  3. Z

    Dataset: A Systematic Literature Review on the topic of High-value datasets

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasija Nikiforova; Nina Rizun; Magdalena Ciesielska; Charalampos Alexopoulos; Andrea Miletič (2023). Dataset: A Systematic Literature Review on the topic of High-value datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7944424
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    University of Zagreb
    Gdańsk University of Technology
    University of Tartu
    University of the Aegean
    Authors
    Anastasija Nikiforova; Nina Rizun; Magdalena Ciesielska; Charalampos Alexopoulos; Andrea Miletič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.

    The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.

    Methodology

    To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).

    These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.

    To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.

    Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.

    Description of the data in this data set

    Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies

    The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information

    Descriptive information
    1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet 2) Complete reference - the complete source information to refer to the study 3) Year of publication - the year in which the study was published 4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter} 5) DOI / Website- a link to the website where the study can be found 6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science 7) Availability in OA - availability of an article in the Open Access 8) Keywords - keywords of the paper as indicated by the authors 9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}

    Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?

    Quality- and relevance- related information
    17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)? 18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))

    HVD determination-related information
    19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term? 20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output") 21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description) 22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles? 23) Data - what data do HVD cover? 24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)

    Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx

    Licenses or restrictions CC-BY

    For more info, see README.txt

  4. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSDT5Y2013.B25047
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2009-2013 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The 2007, 2008, 2009, 2010, 2011, 2012, and 2013 plumbing data for Puerto Rico will not be shown. Research indicates that the questions on plumbing facilities that were introduced in 2008 in the stateside American Community Survey and the 2008 Puerto Rico Community Survey may not have been appropriate for Puerto Rico..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2009-2013 5-Year American Community Survey

  5. Criteria for screening the relevance of candidate indicators.

    • plos.figshare.com
    xls
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebecca H. Correia; Darly Dash; Aaron Jones; Meredith Vanstone; Komal Aryal; Henry Yu-Hin Siu; Aquila Gopaul; Andrew P. Costa (2024). Criteria for screening the relevance of candidate indicators. [Dataset]. http://doi.org/10.1371/journal.pone.0297505.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Rebecca H. Correia; Darly Dash; Aaron Jones; Meredith Vanstone; Komal Aryal; Henry Yu-Hin Siu; Aquila Gopaul; Andrew P. Costa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Criteria for screening the relevance of candidate indicators.

  6. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSDT1Y2012.C25050?q=population+per+state
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2000 data. Boundaries for urban areas have not been updated since Census 2000. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2012 American Community Survey (ACS) data generally reflect the December 2009 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The 2009, 2010, 2011, and 2012 plumbing data for Puerto Rico will not be shown. Research indicates that the questions on plumbing facilities that were introduced in 2008 in the stateside American Community Survey and the 2008 Puerto Rico Community Survey may not have been appropriate for Puerto Rico..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2012 American Community Survey

  7. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSCP1Y2014.CP04?g=050XX00US39093
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..An * indicates that the estimate is significantly different (at a 90% confidence level) than the estimate from the most current year. A "c" indicates the estimates for that year and the current year are both controlled; a statistical test is not appropriate...Geographic areas are based on the geographic boundaries of the data year. Current year comparisons with past-year estimates are not re-tabulated to the current year's geographies; rather, the comparison is with the existing geography of each data year. Statistically significant change from prior years' estimates could be the result of changes in the geographic boundaries of an area and not necessarily the demographic, social, or economic characteristics. For more information on geographic changes, see: http://www.census.gov/programs-surveys/acs/guidance.html....Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2014 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The 2010, 2011, 2012, and 2013 plumbing data for Puerto Rico will not be shown. Research indicates that the questions on plumbing facilities that were introduced in 2008 in the stateside American Community Survey and the 2008 Puerto Rico Community Survey may not have been appropriate for Puerto Rico. Plumbing facilities for Puerto Rico were restored on the data products from the 1 year file beginning in 2014 because new questions for Puerto Rico plumbing facilities resolved the problem..Households not paying cash rent are excluded from the calculation of median gross rent..The definitions of the metropolitan and micropolitan statistical areas for the 2013 American Community Survey are based on the commuting patterns identified in the 2010 Census. Estimates prior to 2013 are based on the results of the 2000 Census. Statistically significant change from prior years' estimates could be the result of changes in the metropolitan geographic definitions and not necessarily the demographic, social or economic characteristic. For more information, see: Metropolitan and Micropolitan Statistical Areas..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error c...

  8. ACS Median Household Income Variables - Centroids

    • hub-lincolninstitute.hub.arcgis.com
    • places-lincolninstitute.hub.arcgis.com
    • +2more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Centroids [Dataset]. https://hub-lincolninstitute.hub.arcgis.com/maps/cab3fe0ee8304888a47a58355a472904
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. a

    Land-Use Conflict Identification Strategy (LUCIS) Models

    • hub.arcgis.com
    • catalog.data.gov
    Updated Jun 1, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2010). Land-Use Conflict Identification Strategy (LUCIS) Models [Dataset]. https://hub.arcgis.com/documents/99b2d378c87740ff96c1a8d0d06d6a62
    Explore at:
    Dataset updated
    Jun 1, 2010
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    The downloadable ZIP file contains model documentation and contact information for the model creator. For more information, or a copy of the project report which provides greater model detail, please contact Ryan Urie - traigo12@gmail.com.This model was created from February through April 2010 as a central component of the developer's master's project in Bioregional Planning and Community Design at the University of Idaho to provide a tool for identifying appropriate locations for various land uses based on a variety of user-defined social, economic, ecological, and other criteria. It was developed using the Land-Use Conflict Identification Strategy developed by Carr and Zwick (2007). The purpose of this model is to allow users to identify suitable locations within a user-defined extent for any land use based on any number of social, economic, ecological, or other criteria the user chooses. The model as it is currently composed was designed to identify highly suitable locations for new residential, commercial, and industrial development in Kootenai County, Idaho using criteria, evaluations, and weightings chosen by the model's developer. After criteria were chosen, one or more data layers were gathered for each criterion from public sources. These layers were processed to result in a 60m-resolution raster showing the suitability of each criterion across the county. These criteria were ultimately combined with a weighting sum to result in an overall development suitability raster. The model is intended to serve only as an example of how a GIS-based land-use suitability analysis can be conceptualized and implemented using ArcGIS ModelBuilder, and under no circumstances should the model's outputs be applied to real-world decisions or activities. The model was designed to be extremely flexible so that later users may determine their own land-use suitability, suitability criteria, evaluation rationale, and criteria weights. As this was the first project of its kind completed by the model developer, no guarantees are made as to the quality of the model or the absence of errorsThis model has a hierarchical structure in which some forty individual land-use suitability criteria are combined by weighted summation into several land-use goals which are again combined by weighted summation to yield a final land-use suitability layer. As such, any inconsistencies or errors anywhere in the model tend to reveal themselves in the final output and the model is in a sense self-testing. For example, each individual criterion is presented as a raster with values from 1-9 in a defined spatial extent. Inconsistencies at any point in the model will reveal themselves in the final output in the form of an extent different from that desired, missing values, or values outside the 1-9 range.This model was created using the ArcGIS ModelBuilder function of ArcGIS 9.3. It was based heavily on the recommendations found in the text "Smart land-use analysis: the LUCIS model." The goal of the model is to determine the suitability of a chosen land-use at each point across a chosen area using the raster data format. In this case, the suitability for Development was evaluated across the area of Kootenai County, Idaho, though this is primarily for illustrative purposes. The basic process captured by the model is as follows: 1. Choose a land use suitability goal. 2. Select the goals and criteria that define this goal and get spatial data for each. 3. Use the gathered data to evaluate the quality of each criterion across the landscape, resulting in a raster with values from 1-9. 4. Apply weights to each criterion to indicate its relative contribution to the suitability goal. 5. Combine the weighted criteria to calculate and display the suitability of this land use at each point across the landscape. An individual model was first built for each of some forty individual criteria. Once these functioned successfully, individual criteria were combined with a weighted summation to yield one of three land-use goals (in this case, Residential, Commercial, or Industrial). A final model was then constructed to combined these three goals into a final suitability output. In addition, two conditional elements were placed on this final output (one to give already-developed areas a very high suitability score for development [a "9"] and a second to give permanently conserved areas and other undevelopable lands a very low suitability score for development [a "1"]). Because this model was meant to serve primarily as an illustration of how to do land-use suitability analysis, the criteria, evaluation rationales, and weightings were chosen by the modeler for expediency; however, a land-use analysis meant to guide real-world actions and decisions would need to rely far more heavily on a variety of scientific and stakeholder input.

  10. d

    BIA Tribes (5 of 5): Tribal Statistical Areas

    • datasets.ai
    • catalog.data.gov
    Updated Jul 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2024). BIA Tribes (5 of 5): Tribal Statistical Areas [Dataset]. https://datasets.ai/datasets/bia-tribes-5-of-5-tribal-statistical-areas2
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset authored and provided by
    U.S. Environmental Protection Agency
    Description

    In Oklahoma, historic depictions of the land areas representations, as described in 1867-1870, were developed and called Tribal Statistical Areas (TSA) in the AIAN-LAR. These areas are similar to the Bureau of Census Oklahoma Tribal Statistical Areas (OTSA) which are areas used for the collection, tabulation and presentation of decennial census data for the 36 Federally- recognized American Indian tribes located in the state. No legal inference can or should be made from the TSA information in the GIS dataset. Reservation boundary data is limited in authority to those areas where there has been settled Congressional definition or final judicial interpretation of the boundary. Absent settled Congressional definition or final judicial interpretation of a reservation boundary, the BIA recommends consultation with the appropriate tribe and then the BIA to obtain interpretations of the reservation boundary. This GIS Dataset is prepared strictly for illustrative and reference purposes only and should not be used, and is not intended for legal, survey, engineering or navigation purposes. No warranty is made by the Bureau of Indian Affairs (BIA) for the use of the data for purposes not intended by the BIA. This GIS Dataset may contain errors. There is no impact on the legal status of the land areas depicted herein and no impact on land ownership. No legal inference can or should be made from the information in this GIS Dataset. The GIS Dataset is to be used solely for illustrative, reference and statistical purposes and may be used for government to government Tribal consultation. Reservation boundary data is limited in authority to those areas where there has been settled Congressional definition or final judicial interpretation of the boundary. Absent settled Congressional definition or final judicial interpretation of a reservation boundary, the BIA recommends consultation with the appropriate Tribe and then the BIA to obtain interpretations of the reservation boundary. The land areas and their representations are compilations defined by the official land title records of the Bureau of Indian Affairs (BIA) which include treaties, statutes, Acts of Congress, agreements, executive orders, proclamations, deeds and other land title documents. The trust, restricted, and mixed ownership land area shown here, are suitable only for general spatial reference and do not represent the federal government’s position on the jurisdictional status of Indian country. Ownership and jurisdictional status is subject to change and must be verified with plat books, patents, and deeds in the appropriate federal and state offices. Included in this dataset are the exterior extent of off reservation trust, restricted fee tracts and mixed tracts of land including Public Domain allotments, Dependent Indian Communities, Homesteads and government administered lands and those set aside for schools and dormitories. There are also land areas where there is more than one tribe having an interest in or authority over a tract of land but this information is not specified in the AIAN-LAR dataset. The dataset includes both surface and subsurface tracts of land (tribal and individually held) “off reservation” tracts and not simply off reservation “allotments” as land has in many cases been subsequently acquired in trust. These data are public information and may be used by various organizations, agencies, units of government (i.e., Federal, state, county, and city), and other entities according to the restrictions on appropriate use. It is strongly recommended that these data be acquired directly from the BIA and not indirectly through some other source, which may have altered or integrated the data for another purpose for which they may not have been intended. Integrating land areas into another dataset and attempting to resolve boundary differences between other entities may produce inaccurate results. It is also strongly recommended that careful attention be paid to the content of the metadata file associated with these data. Users are cautioned that digital enlargement of these data to scales greater than those at which they were originally mapped can cause misinterpretation. The BIA AIAN-LAR dataset’s spatial accuracy and attribute information are continuously being updated, improved and is used as the single authoritative land area boundary data for the BIA mission. These data are available through the Bureau of Indian Affairs, Office of Trust Services, Division of Land Titles and Records, Branch of Geospatial Support.

  11. u

    Short Rotation Woody Crop Site Suitability: Hybrid Poplar - Catalogue -...

    • data.urbandatacentre.ca
    Updated Oct 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Short Rotation Woody Crop Site Suitability: Hybrid Poplar - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-07668020-91d7-481a-bfbd-8ea07aace7b4
    Explore at:
    Dataset updated
    Oct 19, 2025
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This data depicts site suitability for the establishment of area-based Short Rotation Woody Crops (SRWC) of hybrid poplar on lands eligible (i.e. non-forested) for afforestation across Canada. Determining the feasibility of a large-scale afforestation program is one approach being investigated by the Government of Canada to increase Canada's potential to sequester carbon from the atmosphere and/or produce bioproducts and bioenergy. Large-scale afforestation, however, requires knowledge of where it is suitable to establish and grow trees. Spatial models based on Boolean logic and/or statistical models within a geographic information system may be used for this purpose, but empirical environmental data are often lacking, and the association of these data to land suitability is most often a subjective process. As a solution to this problem, a fuzzy-logic modeling approach to assess site suitability for afforestation of hybrid poplar (Populus spp.) and willow (Salix spp.) in Canada was developed. Expert knowledge regarding the selection and magnitudes of environmental variables were integrated into fuzzy rule sets from which estimates of site suitability were generated and spatially presented. The environmental variables selected included growing season precipitation, climate moisture index, growing degree days, the Canada Land Inventory capability for agriculture and elevation. Site suitability is generally defined as the fitness of a given type of land for a particular use. For this assessment, site suitability was defined as the fitness of edaphic, climatic and topographic conditions to establish and grow SRWC species at rates 8 times those of native species. Suitability index values range from 1-100, with higher values corresponding to higher suitability. Approximately 246,000 km2, or 38% of the eligible land base within Canada was found to be suitable for afforestation using Short Rotation Woody Crops (SRWC) of hybrid poplar and/or willow.

  12. u

    Short Rotation Woody Crop Site Suitability: Willow - Catalogue - Canadian...

    • data.urbandatacentre.ca
    Updated Oct 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Short Rotation Woody Crop Site Suitability: Willow - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-80a7f19e-b71f-4094-aa6e-c594b5b49f3b
    Explore at:
    Dataset updated
    Oct 19, 2025
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This data depicts site suitability for the establishment of area-based Short Rotation Woody Crops (SRWC) of willow on lands eligible (i.e. non-forested) for afforestation across Canada. Determining the feasibility of a large-scale afforestation program is one approach being investigated by the Government of Canada to increase Canada's potential to sequester carbon from the atmosphere and/or produce bioproducts and bioenergy. Large-scale afforestation, however, requires knowledge of where it is suitable to establish and grow trees. Spatial models based on Boolean logic and/or statistical models within a geographic information system may be used for this purpose, but empirical environmental data are often lacking, and the association of these data to land suitability is most often a subjective process. As a solution to this problem, a fuzzy-logic modeling approach to assess site suitability for afforestation of hybrid poplar (Populus spp.) and willow (Salix spp.) in Canada was developed. Expert knowledge regarding the selection and magnitudes of environmental variables were integrated into fuzzy rule sets from which estimates of site suitability were generated and spatially presented. The environmental variables selected included growing season precipitation, climate moisture index, growing degree days, the Canada Land Inventory capability for agriculture and elevation. Site suitability is generally defined as the fitness of a given type of land for a particular use. For this assessment, site suitability was defined as the fitness of edaphic, climatic and topographic conditions to establish and grow SRWC species at rates 8 times those of native species. Suitability index values range from 1-100, with higher values corresponding to higher suitability. Approximately 246,000 km2, or 38% of the eligible land base within Canada was found to be suitable for afforestation using Short Rotation Woody Crops (SRWC) of hybrid poplar and/or willow.

  13. qPortal: A platform for data-driven biomedical research

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Mohr; Andreas Friedrich; David Wojnar; Erhan Kenar; Aydin Can Polatkan; Marius Cosmin Codrea; Stefan Czemmel; Oliver Kohlbacher; Sven Nahnsen (2023). qPortal: A platform for data-driven biomedical research [Dataset]. http://doi.org/10.1371/journal.pone.0191603
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Christopher Mohr; Andreas Friedrich; David Wojnar; Erhan Kenar; Aydin Can Polatkan; Marius Cosmin Codrea; Stefan Czemmel; Oliver Kohlbacher; Sven Nahnsen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Modern biomedical research aims at drawing biological conclusions from large, highly complex biological datasets. It has become common practice to make extensive use of high-throughput technologies that produce big amounts of heterogeneous data. In addition to the ever-improving accuracy, methods are getting faster and cheaper, resulting in a steadily increasing need for scalable data management and easily accessible means of analysis.We present qPortal, a platform providing users with an intuitive way to manage and analyze quantitative biological data. The backend leverages a variety of concepts and technologies, such as relational databases, data stores, data models and means of data transfer, as well as front-end solutions to give users access to data management and easy-to-use analysis options. Users are empowered to conduct their experiments from the experimental design to the visualization of their results through the platform. Here, we illustrate the feature-rich portal by simulating a biomedical study based on publically available data. We demonstrate the software’s strength in supporting the entire project life cycle. The software supports the project design and registration, empowers users to do all-digital project management and finally provides means to perform analysis. We compare our approach to Galaxy, one of the most widely used scientific workflow and analysis platforms in computational biology. Application of both systems to a small case study shows the differences between a data-driven approach (qPortal) and a workflow-driven approach (Galaxy).qPortal, a one-stop-shop solution for biomedical projects offers up-to-date analysis pipelines, quality control workflows, and visualization tools. Through intensive user interactions, appropriate data models have been developed. These models build the foundation of our biological data management system and provide possibilities to annotate data, query metadata for statistics and future re-analysis on high-performance computing systems via coupling of workflow management systems. Integration of project and data management as well as workflow resources in one place present clear advantages over existing solutions.

  14. a

    What is the predominant means of transportation to work (excluding driving...

    • hub.arcgis.com
    • engage-socal-pilot-scag-rdp.hub.arcgis.com
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). What is the predominant means of transportation to work (excluding driving alone)? [Dataset]. https://hub.arcgis.com/maps/b371bc62dfe043ac84f86fdb71514e3a
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This map reveals the most popular alternatives to driving alone to work. This includes workers who commuted to work by:WalkingWorking from homePublic transportation (excluding taxi)CarpoolingThis map is based on workers' place of residence by mode of commute. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B08301 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis map can also be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. Simulation Data Set

    • s.cnmilf.com
    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  16. Z

    Definitions of terms extracted from data-related European Union laws,...

    • data.niaid.nih.gov
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Locati, Mario (2024). Definitions of terms extracted from data-related European Union laws, version 3 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_12791247
    Explore at:
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Istituto Nazionale di Geofisica e Vulcanologia Sezione di Milano
    Authors
    Locati, Mario
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe, European Union
    Description

    Collection of definitions of terms in English, French, German, Italian and Spanish extracted from the following data-related European laws:

    Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)

    Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance)

    Commission Recommendation (EU) 2018/790 of 25 April 2018 on access to and preservation of scientific information

    Regulation (EU) 2018/1807 of the European Parliament and of the Council of 14 November 2018 on a framework for the free flow of non-personal data in the European Union (Text with EEA relevance)

    Directive (EU) 2019/790 of the European Parliament and of the Council of 17 April 2019 on copyright and related rights in the Digital Single Market and amending Directives 96/9/EC and 2001/29/EC (Text with EEA relevance)

    Directive (EU) 2019/1024 of the European Parliament and of the Council of 20 June 2019 on open data and the re-use of public sector information (recast) (Open Data Directive)

    Regulation (EU) 2021/695 of the European Parliament and of the Council of 28 April 2021 establishing Horizon Europe – the Framework Programme for Research and Innovation, laying down its rules for participation and dissemination, and repealing Regulations (EU) No 1290/2013 and (EU) No 1291/2013 (Text with EEA relevance)

    Regulation (EU) 2022/868 of the European Parliament and of the Council of 30 May 2022 on European data governance and amending Regulation (EU) 2018/1724 (Data Governance Act) (Text with EEA relevance)

    Regulation (EU) 2022/1925 of the European Parliament and of the Council of 14 September 2022 on contestable and fair markets in the digital sector and amending Directives (EU) 2019/1937 and (EU) 2020/1828 (Digital Markets Act) (Text with EEA relevance)

    Regulation (EU) 2022/2065 of the European Parliament and of the Council of 19 October 2022 on a Single Market For Digital Services and amending Directive 2000/31/EC (Digital Services Act) (Text with EEA relevance)

    Commission Implementing Regulation (EU) 2023/138 of 21 December 2022 laying down a list of specific high-value datasets and the arrangements for their publication and re-use (Text with EEA relevance)

    Regulation (EU) 2023/2854 of the European Parliament and of the Council of 13 December 2023 on harmonised rules on fair access to and use of data and amending Regulation (EU) 2017/2394 and Directive (EU) 2020/1828 (Data Act)

    Regulation (EU) 2024/903 of the European Parliament and of the Council of 13 March 2024 laying down measures for a high level of public sector interoperability across the Union (Interoperable Europe Act)

    Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act) Text with EEA relevance.

    Regulation (EU) 2024/2847 of the European Parliament and of the Council of 23 October 2024 on horizontal cybersecurity requirements for products with digital elements and amending Regulations (EU) No 168/2013 and (EU) 2019/1020 and Directive (EU) 2020/1828 (Cyber Resilience Act) (Text with EEA relevance)

  17. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSST1Y2016.S0801
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2016 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Workers include members of the Armed Forces and civilians who were at work last week..The 12 selected states are Connecticut, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Wisconsin..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2016 American Community Survey 1-Year Estimates

  18. f

    Data from: Usefulness of preoperative venography in patients with cardiac...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated Sep 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carnevale, Francisco Cesar; da Silva, Katia Regina; Crevelari, Elizabeth Sartori; de Moraes Albertini, Caio Marcos; Costa, Roberto; da Motta Leal Filho, Joaquim Maurício; Filho, Martino Martinelli (2018). Usefulness of preoperative venography in patients with cardiac implantable electronic devices submitted to lead replacement or device upgrade procedures [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000681171
    Explore at:
    Dataset updated
    Sep 26, 2018
    Authors
    Carnevale, Francisco Cesar; da Silva, Katia Regina; Crevelari, Elizabeth Sartori; de Moraes Albertini, Caio Marcos; Costa, Roberto; da Motta Leal Filho, Joaquim Maurício; Filho, Martino Martinelli
    Description

    Abstract Background: Venous obstructions are common in patients with transvenous cardiac implantable electronic devices, but they rarely cause immediate clinical problems. The main consequence of these lesions is the difficulty in obtaining venous access for additional leads implantation. Objectives: We aimed to assess the prevalence and predictor factors of venous lesions in patients referred to lead reoperations, and to define the role of preoperative venography in the planning of these procedures. Methods: From April 2013 to July 2016, contrast venography was performed in 100 patients referred to device upgrade, revision and lead extraction. Venous lesions were classified as non-significant (< 50%), moderate stenosis (51-70%), severe stenosis (71-99%) or occlusion (100%). Collateral circulation was classified as absent, discrete, moderate or accentuated. The surgical strategy was defined according to the result of the preoperative venography. Univariate analysis was used to investigate predictor factors related to the occurrence of these lesions, with 5% of significance level. Results: Moderate venous stenosis was observed in 23%, severe in 13% and occlusions in 11%. There were no significant differences in relation to the device side or the venous segment. The usefulness of the preoperative venography to define the operative tactic was proven, and in 99% of the cases, the established surgical strategy could be performed according to plan. Conclusions: The prevalence of venous obstruction is high in CIED recipients referred to reoperations. Venography is highly indicated as a preoperative examination for allowing the adequate surgical planning of procedures involving previous transvenous leads.

  19. ACS-ED 2014-2018 Total Population: Economic Characteristics (DP03)

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2014-2018 Total Population: Economic Characteristics (DP03) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2014-2018-total-population-economic-characteristics-dp03-7814e
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data. -9 An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. -8 An '-8' means that the estimate is not applicable or not available. -6 A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution. -5 A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. -3 A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate. -2 A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  20. Supply Chain Greenhouse Gas Emission Factors for US Industries and...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Supply Chain Greenhouse Gas Emission Factors for US Industries and Commodities [Dataset]. https://catalog.data.gov/dataset/supply-chain-greenhouse-gas-emission-factors-for-us-industries-and-commodities
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    United States
    Description

    Many organizations quantify greenhouse emissions in their value chain. Emissions from purchased goods and services and capital goods, referred to as Scope 3 emissions in the Greenhouse Gas Protocol Scope 3 Accounting and Reporting Standard, represent a significant emissions source for many organizations. To assist in quantifying these emissions, we have developed a comprehensive set of supply chain emission factors covering all categories of goods and services in the US economy. These factors are intended for quantifying emissions from purchased goods and services using the spend-based method defined in the Greenhouse Gas Protocol Technical Guidance for Calculating Scope 3 Emissions. The factors were prepared using USEEIO models, which are a life cycle models of goods and services in the US economy. The supply chain emission factors are presented in units of kilogram emissions per US dollar of purchases for a category of goods and services with a defined life cycle scope. Sets of factors covering all sectors of the economy are provided for years from 2010 to 2016 with two levels of sector aggregation. The factors are provided for both industries and commodities, where commodities are equivalent to a category of good or service, and industries are producers of one or more commodities. A set of five data quality scores covering data reliability, temporal, geographical and technological correlation and completeness of data collection is provided along with each factor. The factors presented are as follows: 1. Supply Chain Emission Factors without Margins: emissions associated with cradle to factory gate 2. Margins of Supply Chain Emission Factors: emissions associated with factory gate to shelf, which includes emissions from transportation, wholesale and retail as well as adjustments for price markups 3. Supply Chain Emission Factors with Margins: emissions associated with cradle to shelf (equal to the sum of the above two factors) End users of products will likely find the Supply Chain Emission Factors with Margins most appropriate for their use. Organizations purchasing intermediate products at the factory gate will likely find the Supply Chain Emission Factors without Margins to be most appropriate. See the Executive Summary of the associated report for an example calculation using the factors. All factors are associated with limitations and variations in underlying data quality. We encourage the reader to carefully read the report to understand the differences across these sets, underlying assumptions in their calculation, their limitations to decide if they are appropriate for their intended use. If the reader deems the factors are appropriate, this report along with the factor data quality scores will aid in selection of factors best fit for their intended use. This dataset is associated with the following publication: Ingwersen, W., and M. Li. Supply Chain Greenhouse Gas Emission Factors for US Industries and Commodities. U.S. Environmental Protection Agency, Washington, DC, USA, 2020.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2020). Meta data and supporting documentation [Dataset]. https://catalog.data.gov/dataset/meta-data-and-supporting-documentation
Organization logo

Meta data and supporting documentation

Explore at:
Dataset updated
Nov 12, 2020
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

We include a description of the data sets in the meta-data as well as sample code and results from a simulated data set. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The R code is available on line here: https://github.com/warrenjl/SpGPCW. Format: Abstract The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publicly available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. File format: R workspace file. Metadata (including data dictionary) • y: Vector of binary responses (1: preterm birth, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate). This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

Search
Clear search
Close search
Google apps
Main menu