Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.
Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.
Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global map application market is experiencing robust growth, driven by the increasing penetration of smartphones, rising demand for location-based services, and the integration of advanced features like augmented reality and real-time traffic updates. Let's assume a 2025 market size of $15 billion, considering the significant investment and expansion in this sector. With a Compound Annual Growth Rate (CAGR) of 12% projected for the period 2025-2033, the market is poised to reach approximately $45 billion by 2033. This growth is fueled by several key trends: the development of more sophisticated navigation systems incorporating AI, the surge in the popularity of ride-sharing services heavily reliant on map apps, and the expanding use of maps in various industries such as logistics and delivery services. While factors like data privacy concerns and the competitive landscape pose some restraints, the overall outlook remains positive, driven by continuous innovation and increasing user adoption across both general and enterprise segments. The market is segmented by operating system (Android, iOS, Others) and user type (General, Enterprise), reflecting the diverse applications and user needs catered to by these apps. Geographic expansion is another significant factor, with North America and Europe currently leading the market, but substantial growth potential in Asia Pacific and other emerging regions. The competitive landscape is highly dynamic, with established players like Google Maps and Waze vying for market share alongside specialized players like OsmAnd and Citymapper catering to niche needs. The ongoing development of offline map functionality, improved accuracy, and enhanced user interfaces are key factors in maintaining user engagement and attracting new users. Further growth will depend on the ability of companies to leverage emerging technologies such as 5G and edge computing to deliver faster and more reliable location services. The integration of map apps with other services, creating seamless user experiences across various platforms and applications, presents a key area of future development. The continuous expansion of the market reflects a fundamental human need for navigation and location-based information which is amplified by the ever-increasing interconnected world.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive contains native resolution and super resolution (SR) Landsat imagery, derivative lake shorelines, and previously-published lake shorelines derived airborne remote sensing, used here for comparison. Landsat images are from 1985 (Landsat 5) and 2017 (Landsat 8) and are cropped to study areas used in the corresponding paper and converted to 8-bit format. SR images were created using the model of Lezine et al (2021a, 2021b), which outputs imagery at 10x-finer resolution, and they have the same extent and bit depth as the native resolution scenes included. Reference shoreline datasets are from Kyzivat et al. (2019a and 2019b) for the year 2017 and Walter Anthony et al. (2021a, 2021b) for Fairbanks, AK, USA in 1985. All derived and comparison shoreline datasets are cropped to the same extent, filtered to a common minimum lake size (40 m2 for 2017; 13 m2 for 1985), and smoothed via 10 m morphological closing. The SR-derived lakes were determined to have F-1 scores of 0.75 (2017 data) and 0.60 (1985 data) as compared to reference lakes for lakes larger than 500 m2, and accuracy is worse for smaller lakes. More details are in the forthcoming accompanying publication.
All raster images are in cloud-optimized geotiff (COG) format (.tif) with file naming shown in Table 1. Vector shoreline datasets are in ESRI shapefile format (.shp, .dbf, etc.), and file names use the abbreviations LR for low resolution, SR for high resolution, and GT for “ground truth” comparison airborne-derived datasets.
Landsat-5 and Landsat-8 images courtesy of the U.S. Geological Survey
For an interactive map demo of these datasets via Google Earth Engine Apps, visit: https://ekyzivat.users.earthengine.app/view/super-resolution-demo
Table 1: File naming scheme based on region, with some regions requiring two-scene mosaics.
Region
Landsat ID
Mosaic name
Yukon Flats Basin
LC08_L2SP_068014_20170708_20200903_02_T1
LC08_20170708_yflats_cog.tif
“
LC08_L2SP_068013_20170708_20201015_02_T1
“
Old Crow Flats
LC08_L2SP_067012_20170903_20200903_02_T1
-
Mackenzie River Delta
LC08_L2SP_064011_20170728_20200903_02_T1
LC08_20170728_inuvik_cog.tif
“
LC08_L2SP_064012_20170728_20200903_02_T1
“
Canadian Shield Margin
LC08_L2SP_050015_20170811_20200903_02_T1
LC08_20170811_cshield-margin_cog.tif
“
LC08_L2SP_048016_20170829_20200903_02_T1
“
Canadian Shield near Baker Creek
LC08_L2SP_046016_20170831_20200903_02_T1
-
Canadian Shield near Daring Lake
LC08_L2SP_045015_20170723_20201015_02_T1
-
Peace-Athabasca Delta
LC08_L2SP_043019_20170810_20200903_02_T1
-
Prairie Potholes North 1
LC08_L2SP_041021_20170812_20200903_02_T1
LC08_20170812_potholes-north1_cog.tif
“
LC08_L2SP_041022_20170812_20200903_02_T1
“
Prairie Potholes North 2
LC08_L2SP_038023_20170823_20200903_02_T1
-
Prairie Potholes South
LC08_L2SP_031027_20170907_20200903_02_T1
-
Fairbanks
LT05_L2SP_070014_19850831_20200918_02_T1
-
References:
Kyzivat, E. D., Smith, L. C., Pitcher, L. H., Fayne, J. V., Cooley, S. W., Cooper, M. G., Topp, S. N., Langhorst, T., Harlan, M. E., Horvat, C., Gleason, C. J., & Pavelsky, T. M. (2019b). A high-resolution airborne color-infrared camera water mask for the NASA ABoVE campaign. Remote Sensing, 11(18), 2163. https://doi.org/10.3390/rs11182163
Kyzivat, E.D., L.C. Smith, L.H. Pitcher, J.V. Fayne, S.W. Cooley, M.G. Cooper, S. Topp, T. Langhorst, M.E. Harlan, C.J. Gleason, and T.M. Pavelsky. 2019a. ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1707
Ekaterina M. D. Lezine, Kyzivat, E. D., & Smith, L. C. (2021a). Super-resolution surface water mapping on the Canadian shield using planet CubeSat images and a generative adversarial network. Canadian Journal of Remote Sensing, 47(2), 261–275. https://doi.org/10.1080/07038992.2021.1924646
Ekaterina M. D. Lezine, Kyzivat, E. D., & Smith, L. C. (2021b). Super-resolution surface water mapping on the canadian shield using planet CubeSat images and a generative adversarial network. Canadian Journal of Remote Sensing, 47(2), 261–275. https://doi.org/10.1080/07038992.2021.1924646
Walter Anthony, K.., Lindgren, P., Hanke, P., Engram, M., Anthony, P., Daanen, R. P., Bondurant, A., Liljedahl, A. K., Lenz, J., Grosse, G., Jones, B. M., Brosius, L., James, S. R., Minsley, B. J., Pastick, N. J., Munk, J., Chanton, J. P., Miller, C. E., & Meyer, F. J. (2021a). Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett, 16, 35010. https://doi.org/10.1088/1748-9326/abc848
Walter Anthony, K., and P. Lindgren. 2021b. ABoVE: Historical Lake Shorelines and Areas near Fairbanks, Alaska, 1949-2009. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1859
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supporting information for: REMAP: An online remote sensing application for land cover classification and monitoringcsv and json files for implementing land cover classifications using the remap, the remote ecosystem assessment and monitoring pipeline (https://remap-app.org/)Nearmap aerial photograph courtesy of Nearmap Pty Ltd.For further information see:Murray, N.J., Keith, D.A., Simpson, D., Wilshire, J.H., Lucas, R.M. (accepted) REMAP: A cloud-based remote sensing application for generalized ecosystem classifications. Methods in Ecology and Evolution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aridity index also known as the dryness index is the ratio of potential evapotranspiration to precipitation. The aridity index indicates water deficiency. The aridity index is used to classify locations as humid or dry. The evaporation ratio (evaporation index) on the other hand indicates the availability of water in watersheds. The evaporation index is inversely proportional to water availability. For long periods renewable water resources availability is residual precipitation after evaporation loss is deducted. These two ratios provide very useful information about water availability. Understating the powerful potential of the aridity index and evaporation ratio, this app is developed on the Google Earth Engine using NLDAS-2 and MODIS products to map temporal variability of the Aridity Index and Evaporation ratio over CONUS. The app can be found at https://cartoscience.users.earthengine.app/view/aridity-index.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">
SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.
National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.
The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">
As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Google Earth Engine (GEE) App was developed to collect and visualize the two year-results of the MIRIFICUS Project.
Link to the GEE App: https://ee-mirificusproject.projects.earthengine.app/view/mirificus25">https://ee-mirificusproject.projects.earthengine.app/view/mirificus25
MIRIFICUS is funded by the Italian Space Agency (ASI) and coordinated by the Institute of Bioeconomy of the National Council Research of Italy (CNR-IBE) in collaboration with the Institute for Environmental Protection and Research (ISPRA). The research activities are focused on investigating nature-based solutions and cool materials as strategies to mitigate SUHI in the urban areas of the Italian municipalities. The aim is to share the information (data and maps) with Public Administrations (PAs) to support mitigation interventions management in urban areas.
MIRIFICUS group members: Giulia Guerri, Gennaro Albini, Alessandra Casali, Angela Cimini, Luca Congedo, Alfonso Crisci, Arnaldo Angelo De Benedetti, Marina Funaro, Stefano De Corso, Pasquale Dichicco, Michele Munafò, Marco Morabito.
Aknowledgments:
This work was funded by the Italian Space Agency (ASI), Call for Ideas "Effects of climate change and extreme events" - “I4DP_PA (INNOVATION FOR DOWNSTREAM PREPARATION FOR PUBLIC ADMINISTRATIONS)” - MIRIFICUS Project (Monitoraggio degli Interventi di RIForestazione per l’Isola di Calore Urbana tramite i Satelliti).
Contacts
Dr. Marco Morabito (CNR-IBE), marco.morabito@cnr.it
Dr. Michele Munafò (ISPRA), michele.munafo@isprambiente.it
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It comprises end-user discussions on topics related to the Google Maps application on the Reddit Forum. A small dataset comprising user discussion about Google Maps application used for validating argumentation-based research approaches. A Python script for extracting end-user feedback from the Reddit forum by keeping the argumentative order of discussions (comment-reply).
In 2023, Google Maps was the most popular navigation mobile app by downloads in Poland, amounting to nearly two million on iPhone and iPad App Store, and Google Play. Komoot followed with approximately 610 thousand downloads.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global GPS navigation software market is experiencing robust growth, driven by the increasing adoption of smartphones, the proliferation of connected cars, and the rising demand for real-time location-based services. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $40 billion by 2033. Key drivers include advancements in mapping technology (e.g., high-definition maps, 3D mapping), the integration of AI and machine learning for improved route optimization and traffic prediction, and the growing need for efficient logistics and fleet management solutions. The market is segmented by software type (e.g., in-dash navigation, mobile apps, web-based), application (e.g., personal navigation, commercial fleet management), and region. Competition is intense, with established players like Garmin, TomTom, and Google competing with emerging tech companies and regional players. Growth is particularly strong in developing economies with expanding middle classes and increasing smartphone penetration. However, challenges remain, including data privacy concerns, the need for continuous map updates, and the potential disruption from autonomous driving technologies. The market's future trajectory depends heavily on the successful integration of new technologies, such as augmented reality navigation and improved user interfaces. Strategic partnerships and mergers & acquisitions are likely to shape the competitive landscape, particularly as companies strive to deliver more personalized and comprehensive location-based services. The increasing reliance on cloud-based services and the adoption of subscription models also represent significant market trends.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Google Earth Engine App developed to delineate water bodies around the globe from 1984 until present and to provide 16 day estimates of surface area of water bodies as well as shapefiles to the user. The app uses a novel framework to filters only those images that cloud is on top of the water body and allows users to choose from a list of spectral water indices to map water bodies. The app also allows users to select the choice of threshold (i.e., a fixed zero threshold or dynamic threshold to separate water form non-water background).
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The digital map market is experiencing robust growth, projected to reach a market size of $9.05 billion in 2025 and expanding at a compound annual growth rate (CAGR) of 26.06%. This significant expansion is driven by several key factors. The increasing adoption of location-based services (LBS) across various sectors, including automotive, logistics, and e-commerce, fuels demand for accurate and comprehensive digital maps. Advancements in technologies like AI and machine learning are enhancing map accuracy, functionality, and personalization, further stimulating market growth. Furthermore, the rising penetration of smartphones and connected devices provides a readily available platform for digital map usage. The integration of digital maps into autonomous vehicle technology is another major driver, promising substantial future growth. Competition is fierce, with established players like Google, TomTom, and HERE Technologies vying for market share alongside emerging innovative companies offering specialized solutions. Market segmentation reveals a strong emphasis on navigation applications, reflecting the pervasive use of digital maps for route planning and guidance. Geocoding services, which convert addresses into geographical coordinates, also constitute a substantial market segment. While North America currently holds a significant market share due to early adoption and technological advancements, the Asia-Pacific region is expected to witness the fastest growth, propelled by rapid urbanization and increasing smartphone penetration in countries like India and China. However, challenges remain, including data privacy concerns, the need for continuous map updates to maintain accuracy, and the high cost of data acquisition and processing. Despite these restraints, the long-term outlook for the digital map market remains positive, with continued technological innovation and expanding applications promising sustained growth throughout the forecast period (2025-2033).
FROM PUNCH CARDS TO MOBILE APPS: A GEOLOGIST'S 40 YEAR ADVENTURE IN COMPUTING
ALLMENDINGER, Richard W., Department of Earth and Atmospheric Sciences, Cornell University, Snee Hall, Ithaca, NY 14853-1504
Few things have changed more than computing over the last 40 years: from slide rulers and expensive calculators (early 70s), punch cards (late 70s and early 80s), desktop computers with graphical user interfaces (mid-1980s to 1990s) laptop computers of the (1990s to mid-2000s), to the current explosion of mobile devices/apps along with the Internet/Cloud. I started developing apps in the mid-1980s and today, my desktop and mobile apps touch about 50,000 people per year. I will highlight two of my 12 major apps: Stereonet and GMDE (Geologic Map Data Extractor). Stereonet was first written and distributed in the 1980s for the Mac. Today it is available for the Mac, Windows, and Linux and, although it remains single-user focused, it has been expanded to include visualization of observations in a Google satellite view, export 3D symbols for plotting in Google Earth, and upload of data directly to the StraboSpot website/database, tagged with StraboSpot-specific nomenclature. Stereonet also made the jump to iOS where the user can, not only see and plot their data on their iPhone or iPad, but can also use device orientation to make basic measurements in the field. GMDE is also available for all three desktop platforms but not (yet) for mobile devices. In short, GMDE facilitates the task of extracting quantitative data from geologic maps and satellite imagery. A georeferenced basemap with realtime access to elevation at any point from internet elevation services makes it easy to leverage all of the information hidden in a century of high quality geologic mapping. GMDE specializes in structural calculations: 3-point and piercing point problems, rapid digitization of existing orientation symbols, topographic sections, and down-plunge projections as well as an integrated Google satellite view. The digitized data from a static, raster map can be analyzed quantitatively and shared over the Internet to enable new scientific studies. In the future, the algorithms in GMDE can be adapted to enable better geologic mapping itself by allowing the geologist to make realtime calculations in the field that can be interrogated immediately for their significance. After all, technology should not just make our lives easier but enable genuinely new science to be done. http://www.geo.cornell.edu/geology/faculty/RWA/programs/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Google Earth Engine (GEE) application, developed within the framework of the Worklimate 2.0 Research Project, provides spatially explicit estimates of heat-related workability loss (WL) across Italian municipalities. Designed to support the management of occupational health risks linked to summer heat exposure, the tool offers a flexible and interactive environment for visualizing how heat stress affects outdoor work capacity under varying environmental and operational conditions.
Based on high-resolution MOLOCH/ERA5 climate data (2.5 km) and algorithms derived from the Wet Bulb Globe Temperature (WBGT) index, the application displays average WL percentages for different 10-day periods. Users can filter the results by:
Work shift (five 8-hour timeframes)
Metabolic workload (moderate: 300 W; high: 415 W)
Exposure condition (sun or shade)
Additional geographic classifications include region, elevation class (plain vs. non-plain), and coastal proximity, with focused analysis available for 14 major Italian metropolitan areas.
Targeted at public institutions, researchers, and professionals, the application contributes to heat adaptation planning and supports evidence-based decision-making in the fields of occupational safety and climate resilience.
👉 Access the GEE App: https://ee-worklimate.projects.earthengine.app/view/workabilityloss
This work was funded under the INAIL Research Plan 2022–2024 (Project ID 05), as part of the Worklimate 2.0 Project (Prot. No. 115715, April 18, 2023).
Contacts
Marco Morabito, e-mail: marco.morabito@cnr.it
Michela Bonafede, e-mail: m.bonafede@inail.it
Alessandro Marinaccio, e-mail: a.marinaccio@inail.it
Adults in the United States were surveyed about the travel apps and websites that they viewed most positively as of the first quarter of 2021. Google Maps ranked first on the list with a popularity score amounting to 79 percent. Meanwhile, Google Earth and Expedia ranked second and third, respectively, in terms of popularity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents a high resolution urban land cover classification map across the southern California Air Basin (SoCAB) with a spatial resolution of 60 cm in urban regions and 10 m in non-urban regions. This map was developed to support NASA JPL-based urban biospheric CO2 modeling in Los Angeles, CA. Land cover classification was derived from a novel fusion of Sentinel-2 (10-60 m x 10-60 m) and 2016 NAIP (60 cm x 60 cm) imagery and provides identification of impervious surface, non-photosynthetic vegetation, shrub, tree, grass, pools and lakes.
Land Cover Classes in .tif file: 0: Impervious surface 1: Tree (mixed evergreen/deciduous) 2: Grass (assumed irrigated) 3: Shrub 4: Non-photosynthetic vegetation 5: Water (masked using MNDWI/NDWI)
Google Earth Engine interactive app displaying this map: https://wcoleman.users.earthengine.app/view/socab-irrigated-classification
A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support from the Earth Science Division OCO-2 program is acknowledged. Copyright 2020. All rights reserved.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET) This is a Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET) developed by the Surface Dynamics and Modeling Lab at the University of Alabama that calculates flood depth using a flood extent layer and a digital elevation model. This research is made possible by the CyberSeed Program at the University of Alabama. Project name: WaterServ: A Cyberinfrastructure for Analysis, Visualization and Sharing of Hydrological Data. GitHub Repository (ArcMap and QGIS implementations): https://github.com/csdms-contrib/fwdet Cohen, S., A. Raney, D. Munasinghe, J.D. Loftis J, A. Molthan, J. Bell, L. Rogers, J. Galantowicz, G.R. Brakenridge7, A.J. Kettner, Y. Huang, Y. Tsang, (2019). The Floodwater Depth Estimation Tool (FwDET v2.0) for Improved Remote Sensing Analysis of Coastal Flooding. Natural Hazards and Earth System Sciences, 19, 2053–2065. https://doi.org/10.5194/nhess-19-2053-2019 Cohen, S., G. R. Brakenridge, A. Kettner, B. Bates, J. Nelson, R. McDonald, Y. Huang, D. Munasinghe, and J. Zhang (2018), Estimating Floodwater Depths from Flood Inundation Maps and Topography, Journal of the American Water Resources Association, 54 (4), 847–858. https://doi.org/10.1111/1752-1688.12609 Sample products and data availability: https://sdml.ua.edu/models/fwdet/ https://sdml.ua.edu/michigan-flood-may-2020/ https://cartoscience.users.earthengine.app/view/fwdet-gee-mi https://alabama.app.box.com/s/31p8pdh6ngwqnbcgzlhyk2gkbsd2elq0 GEE implementation output: fwdet_gee_brazos.tif ArcMap implementation output (see Cohen et al. 2019): fwdet_v2_brazos.tif iRIC validation layer (see Nelson et al. 2010): iric_brazos_hydraulic_model_validation.tif Brazos River inundation polygon access in GEE: var brazos = ee.FeatureCollection('users/cartoscience/FwDET-GEE-Public/Brazos_River_Inundation_2016') Nelson, J.M., Shimizu, Y., Takebayashi, H. and McDonald, R.R., 2010. The international river interface cooperative: public domain software for river modeling. In 2nd Joint Federal Interagency Conference, Las Vegas, June (Vol. 27). Google Earth Engine Code /* ---------------------------------------------------------------------------------------------------------------------- # FwDET-GEE calculates floodwater depth from a floodwater extent layer and a DEM Authors: Brad G. Peter, Sagy Cohen, Ronan Lucey, Dinuke Munasinghe, Austin Raney Emails: bpeter@ua.edu, sagy.cohen@ua.edu, ronan.m.lucey@nasa.gov, dsmunasinghe@crimson.ua.edu, aaraney@crimson.ua.edu Organizations: BP, SC, DM, AR - University of Alabama; RL - University of Alabama in Huntsville Last Modified: 10/08/2020 To cite this code use: Peter, Brad; Cohen, Sagy; Lucey, Ronan; Munasinghe, Dinuke; Raney, Austin, 2020, "A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET-GEE)", https://doi.org/10.7910/DVN/JQ4BCN, Harvard Dataverse, V2 ------------------------------------------------------------------------------------------------------------------------- This is a Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDETv2.0) [1] developed by the Surface Dynamics and Modeling Lab at the University of Alabama that calculates flood depth using a flood extent layer and a digital elevation model. This research is made possible by the CyberSeed Program at the University of Alabama. Project name: WaterServ: A Cyberinfrastructure for Analysis, Visualization and Sharing of Hydrological Data. GitHub Repository (ArcMap and QGIS implementations): https://github.com/csdms-contrib/fwdet ------------------------------------------------------------------------------------------------------------------------- How to run this code with your flood extent GEE asset: User of this script will need to update path to flood extent (line 32 or 33) and select from the processing options. Available DEM options (1) are USGS/NED (U.S.) and USGS/SRTMGL1_003 (global). Other options include (2) running the elevation outlier filtering algorithm, (3) adding water body data to the inundation extent, (4) add a water body data layer uploaded by the user rather than using the JRC global surface water data, (5) masking out regular water body data, (6) masking out 0 m depths, (7) choosing whether or not to export, (8) exporting additional data layers, and (9) setting an export file name. The simpleVis option (10) bypasses the time consuming processes and is meant for visualization only; set this option to false to complete the entire process and enable exporting. ------------------------------------------------------------------------------------------------------------------------- ••••••••••••••••••••••••••••••••••••••••••• USER OPTIONS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Load flood extent layer | Flood extent layer must be uploaded to GEE first as an asset. If the flood extent is a shapefile, upload as a FeatureCollection; otherwise, if the flood extent layer is a raster, upload it as an image. A raster layer may be required if the flood extent is a highly complex geometry -------------------------------------- */ var flood = ee.FeatureCollection('users/username/folder/flood_extent') // comment out this line if using an Image // var flood = ee.Image('users/username/folder/flood_extent') // comment out this line if using a FeatureCollection var waterExtent = ee.FeatureCollection('users/username/folder/water_extent') // OPTIONAL comment out this line if using an Image // var waterExtent = ee.Image('users/username/folder/water_extent') // OPTIONAL comment out this line if using a FeatureCollection // Processing options - refer to the directions above /*1*/ var demSource = 'USGS/NED' // 'USGS/NED' or 'USGS/SRTMGL1_003' /*2*/ var outlierTest = 'TRUE' // 'TRUE' (default) or 'FALSE' /*3*/ var addWater = 'TRUE' // 'TRUE' (default) or 'FALSE' /*4*/ var userWater = 'FALSE' // 'TRUE' or 'FALSE' (default) /*5*/ var maskWater = 'FALSE' // 'TRUE' or 'FALSE' (default) /*6*/ var maskZero = 'FALSE' // 'TRUE' or 'FALSE' (default) /*7*/ var exportLayer = 'TRUE' // 'TRUE' (default) or 'FALSE' /*8*/ var exportAll = 'FALSE' // 'TRUE' or 'FALSE' (default) /*9*/ var outputName = 'FwDET_GEE' // text string for naming export file /*10*/ var simpleVis = 'FALSE' // 'TRUE' or 'FALSE' (default) // ••••••••••••••••••••••••••••••••• NO USER INPUT BEYOND THIS POINT •••••••••••••••••••••••••••••••••••••••••••••••••••• // Create buffer around flood area to use for clipping other layers var area = flood.geometry().bounds().buffer(1000).bounds() // Load DEM and grab projection info var dem = ee.Image(demSource).select('elevation').clip(area) // [2,3] var projection = dem.projection() var resolution = projection.nominalScale().getInfo() // Load global surface water layer var jrc = ee.Image('JRC/GSW1_1/GlobalSurfaceWater').select('occurrence').clip(area) // [4] var water_image = jrc // User uploaded flood extent layer // Identify if a raster or vector layer is being used and proceed with appropriate process if ( flood.name() == 'FeatureCollection' ) { var addProperty = function(feature) { return feature.set('val',0); }; var flood_image = flood.map(addProperty).reduceToImage(['val'],ee.Reducer.first()) .rename('flood') } else { var flood_image = flood.multiply(0) } // Optional user uploaded water extent layer if ( userWater == 'TRUE' ) { // Identify if a raster or vector layer is being used and proceed with appropriate process if ( waterExtent.name() == 'FeatureCollection' ) { var addProperty = function(feature) { return feature.set('val',0); }; var water_image = waterExtent.map(addProperty).reduceToImage(['val'],ee.Reducer.first()) .rename('flood') } else { var water_image = waterExtent.multiply(0) } } // Add water bodies to flood extent if 'TRUE' is selected if ( addWater == 'TRUE' ) { var w = water_image.reproject(projection) var waterFill = flood_image.mask().where(w.gt(0),1) flood_image = waterFill.updateMask(waterFill.eq(1)).multiply(0) } // Change processing options if 'TRUE' is selected if ( simpleVis == 'FALSE' ) { flood_image = flood_image.reproject(projection) } else { outlierTest = 'FALSE' exportLayer = 'FALSE' } // Run the outlier filtering process if 'TRUE' is selected if ( outlierTest == 'TRUE' ) { // Outlier detection and filling on complete DEM using the modified z-score and a median filter [5] var kernel = ee.Kernel.fixed(3,3,[[1,1,1],[1,1,1],[1,1,1]]) var kernel_weighted = ee.Kernel.fixed(3,3,[[1,1,1],[1,0,1],[1,1,1]]) var median = dem.focal_median({kernel:kernel}).reproject(projection) var median_weighted = dem.focal_median({kernel:kernel_weighted}).reproject(projection) var diff = dem.subtract(median) var mzscore = diff.multiply(0.6745).divide(diff.abs().focal_median({kernel:kernel}).reproject(projection)) var fillDEM = dem.where(mzscore.gt(3.5),median_weighted) // Outlier detection and filling on the flood extent border pixels var expand = flood_image.focal_max({kernel: ee.Kernel.square({ radius: projection.nominalScale(), units: 'meters' })}).reproject(projection) var demMask = fillDEM.updateMask(flood_image.mask().eq(0)) var boundary = demMask.add(expand) var medianBoundary = boundary.focal_median({kernel:kernel}).reproject(projection) var medianWeightedBoundary = boundary.focal_median({kernel:kernel_weighted}).reproject(projection) var diffBoundary = boundary.subtract(medianBoundary) var mzscoreBoundary = diffBoundary.multiply(0.6745).divide(diffBoundary.abs().focal_median({kernel:kernel}).reproject(projection)) var fill =
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global road safety app market, currently valued at $239 million in 2025, is projected to experience robust growth, driven by increasing smartphone penetration, rising concerns about road accidents, and the growing adoption of telematics and connected car technologies. The market's Compound Annual Growth Rate (CAGR) of 8.4% from 2025 to 2033 indicates a significant expansion, with the market expected to surpass $400 million by 2030. Key growth drivers include the increasing demand for features like driver behavior monitoring, emergency assistance functionalities (e.g., SOS buttons), and integrated navigation with real-time hazard alerts. Furthermore, government initiatives promoting road safety and the integration of these apps with insurance programs are contributing to market expansion. The market is segmented by application (enterprise and personal) and operating system (iOS and Android), with the personal segment currently dominating due to widespread consumer adoption. Regional growth will be driven by increasing adoption in emerging markets like Asia-Pacific and Middle East & Africa, although North America and Europe will retain substantial market share due to early adoption and mature technology infrastructure. While challenges remain, such as data privacy concerns and the need for consistent app quality and functionality, the overall market outlook is positive, anticipating continued growth fueled by technological advancements and heightened awareness of road safety. The competitive landscape is characterized by a mix of established players like Google Maps and Waze, alongside specialized road safety app developers such as SafetyCulture and Life360. Differentiation is achieved through unique features, partnerships with insurance providers, and targeted marketing strategies. The future of the market will likely witness increased integration with vehicle systems, further enhancing functionalities and promoting proactive road safety measures. The development of AI-powered features such as driver fatigue detection and advanced hazard prediction will also play a significant role in driving market expansion and improving road safety globally. Strategic collaborations between app developers, telematics providers, and automotive manufacturers will further shape the market's trajectory, leading to more comprehensive and effective road safety solutions.
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE