Market basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundPost-stroke hemiparesis strongly affects stroke patients’ activities of daily living and health-related quality of life. Scalp acupuncture (SA) is reportedly beneficial for post-stroke hemiparesis. However, there is still no standard of SA for the treatment of post-stroke hemiparesis. Apriori algorithm-based association rule analysis is a kind of “if-then” rule-based machine learning method suitable for investigating the underlying rules of acupuncture point/location selections. This study aimed to investigate the core SA combinations for the treatment of post-stroke hemiparesis by using a systematic review and Apriori algorithm-based association rule analysis.MethodsWe conducted a systematic review to include relevant randomized controlled trial (RCT) studies investigating the effects of SA treatment in treating patients with post-stroke hemiparesis, assessed by the Fugl-Meyer Assessment (FMA) score. We excluded studies using herbal medicine or manual acupuncture.ResultsWe extracted 33 SA locations from the 35 included RCT studies. The following SA styles were noted: International Standard Scalp Acupuncture (ISSA), WHO Standard Acupuncture Point Locations (SAPL), Zhu’s style SA, Jiao’s style SA, and Lin’s style SA. Sixty-one association rules were investigated based on the integrated SA location data.ConclusionsSAPL_GV20 (Baihui), SAPL_GV24 (Shenting), ISSA_MS6_i (ISSA Anterior Oblique Line of Vertex-Temporal, lesion-ipsilateral), ISSA_MS7_i (ISSA Posterior Oblique Line of Vertex-Temporal, lesion-ipsilateral), ISSA_PR (ISSA Parietal region, comprised of ISSA_MS5, ISSA_MS6, ISSA_MS7, ISSA_MS8, and ISSA_MS9), and SAPL_Ex.HN3 (Yintang) can be considered the core SA location combination for the treatment of post-stroke hemiparesis. We recommend a core SA combination for further animal studies, clinical trials, and treatment strategies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundStunting is a vital indicator of chronic undernutrition that reveals a failure to reach linear growth. Investigating growth and nutrition status during adolescence, in addition to infancy and childhood is very crucial. However, the available studies in Ethiopia have been usually focused in early childhood and they used the traditional stastical methods. Therefore, this study aimed to employ multiple machine learning algorithms to identify the most effective model for the prediction of stunting among adolescent girls in Ethiopia.MethodsA total of 3156 weighted samples of adolescent girls aged 15–19 years were used from the 2016 Ethiopian Demographic and Health Survey dataset. The data was pre-processed, and 80% and 20% of the observations were used for training, and testing the model, respectively. Eight machine learning algorithms were included for consideration of model building and comparison. The performance of the predictive model was evaluated using evaluation metrics value through Python software. The synthetic minority oversampling technique was used for data balancing and Boruta algorithm was used to identify best features. Association rule mining using an Apriori algorithm was employed to generate the best rule for the association between the independent feature and the targeted feature using R software.ResultsThe random forest classifier (sensitivity = 81%, accuracy = 77%, precision = 75%, f1-score = 78%, AUC = 85%) outperformed in predicting stunting compared to other ML algorithms considered in this study. Region, poor wealth index, no formal education, unimproved toilet facility, rural residence, not used contraceptive method, religion, age, no media exposure, occupation, and having one or more children were the top attributes to predict stunting. Association rule mining was identified the top seven best rules that most frequently associated with stunting among adolescent girls in Ethiopia.ConclusionThe random forest classifier outperformed in predicting and identifying the relevant predictors of stunting. Results have shown that machine learning algorithms can accurately predict stunting, making them potentially valuable as decision-support tools for the relevant stakeholders and giving emphasis for the identified predictors could be an important intervention to halt stunting among adolescent girls.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socio-demographic characteristics among adolescent girls in Ethiopia, 2016 EDHS.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Market basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...