Facebook
TwitterMarket basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundPost-stroke hemiparesis strongly affects stroke patients’ activities of daily living and health-related quality of life. Scalp acupuncture (SA) is reportedly beneficial for post-stroke hemiparesis. However, there is still no standard of SA for the treatment of post-stroke hemiparesis. Apriori algorithm-based association rule analysis is a kind of “if-then” rule-based machine learning method suitable for investigating the underlying rules of acupuncture point/location selections. This study aimed to investigate the core SA combinations for the treatment of post-stroke hemiparesis by using a systematic review and Apriori algorithm-based association rule analysis.MethodsWe conducted a systematic review to include relevant randomized controlled trial (RCT) studies investigating the effects of SA treatment in treating patients with post-stroke hemiparesis, assessed by the Fugl-Meyer Assessment (FMA) score. We excluded studies using herbal medicine or manual acupuncture.ResultsWe extracted 33 SA locations from the 35 included RCT studies. The following SA styles were noted: International Standard Scalp Acupuncture (ISSA), WHO Standard Acupuncture Point Locations (SAPL), Zhu’s style SA, Jiao’s style SA, and Lin’s style SA. Sixty-one association rules were investigated based on the integrated SA location data.ConclusionsSAPL_GV20 (Baihui), SAPL_GV24 (Shenting), ISSA_MS6_i (ISSA Anterior Oblique Line of Vertex-Temporal, lesion-ipsilateral), ISSA_MS7_i (ISSA Posterior Oblique Line of Vertex-Temporal, lesion-ipsilateral), ISSA_PR (ISSA Parietal region, comprised of ISSA_MS5, ISSA_MS6, ISSA_MS7, ISSA_MS8, and ISSA_MS9), and SAPL_Ex.HN3 (Yintang) can be considered the core SA location combination for the treatment of post-stroke hemiparesis. We recommend a core SA combination for further animal studies, clinical trials, and treatment strategies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accuracy and AUC value of ML algorithms using three hyper parameter tuning techniques.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains transactional data collected for market basket analysis. Each row represents a single transaction with items purchased together. It is ideal for implementing association rule mining techniques such as Apriori, FP-Growth, and other machine learning algorithms.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socio-demographic characteristics among adolescent girls in Ethiopia, 2016 EDHS.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterMarket basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...