18 datasets found
  1. Math-QA for AQuA-RAT dataset

    • kaggle.com
    zip
    Updated May 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johnson chong (2024). Math-QA for AQuA-RAT dataset [Dataset]. https://www.kaggle.com/datasets/johnsonhk88/math-qa-for-aqua-rat-dataset
    Explore at:
    zip(7476954 bytes)Available download formats
    Dataset updated
    May 21, 2024
    Authors
    Johnson chong
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset. AQuA-RAT has provided the questions, options, rationale, and the correct options.

    • Question: A train running at the speed of 48 km / hr crosses a pole in 9 seconds . what is the length of the train ? • Rationale: Speed = ( 48 x 5 / 18 ) m / sec = ( 40 / 3 ) m / sec . length of the train = ( speed x time ) . length of the train = ( 40 / 3 x 9 ) m = 120 m . answer is c . • Options: a ) 140 , b ) 130 , c ) 120 , d ) 170 , e ) 160 • Correct Option is: C

    The rationales are noisy, incomplete and sometimes incorrect. We correct these rationales and provide stepwise solutions for a portion of AQuA-RAT.

    • Our Annotated Formula: multiply(divide(multiply(48, const_1000), const_3600), 9)

  2. h

    aqua_rat

    • huggingface.co
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathew Huerta-Enochian (2025). aqua_rat [Dataset]. https://huggingface.co/datasets/mathewhe/aqua_rat
    Explore at:
    Dataset updated
    Nov 20, 2025
    Authors
    Mathew Huerta-Enochian
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Card for AQuA-Rat

    Homepage: https://github.com/google-deepmind/AQuA This is an unofficial curation of the AQuA-Rat dataset, uploaded here with minimal (i.e., no content-modifying) processing.

    Paper: Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems (ACL Anthology)

    Modifications:

    Pre-tokenized splits removed since tokenization built into most LM pipelines. Fixed file suffix from .json to .jsonl. Changed options column to… See the full description on the dataset page: https://huggingface.co/datasets/mathewhe/aqua_rat.

  3. h

    aqua-rat

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laurentiu Petrea, aqua-rat [Dataset]. https://huggingface.co/datasets/laurentiubp/aqua-rat
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Laurentiu Petrea
    Description

    laurentiubp/aqua-rat dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. O

    AQUA-RAT

    • opendatalab.com
    zip
    Updated Sep 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Oxford (2022). AQUA-RAT [Dataset]. https://opendatalab.com/OpenDataLab/AQUA-RAT
    Explore at:
    zip(99837029 bytes)Available download formats
    Dataset updated
    Sep 22, 2022
    Dataset provided by
    DeepMind
    University of Oxford
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    A large-scale dataset consisting of approximately 100,000 algebraic word problems. The solution to each question is explained step-by-step using natural language. This data is used to train a program generation model that learns to generate the explanation, while generating the program that solves the question.

  5. vietnamese-aqua-rat

    • kaggle.com
    zip
    Updated Nov 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Việt Hưng Nguyễn (2023). vietnamese-aqua-rat [Dataset]. https://www.kaggle.com/datasets/hungsvdut/vietnamese-aqua-rat
    Explore at:
    zip(17530224 bytes)Available download formats
    Dataset updated
    Nov 26, 2023
    Authors
    Việt Hưng Nguyễn
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Việt Hưng Nguyễn

    Released under Apache 2.0

    Contents

  6. AQuA-RAT

    • kaggle.com
    zip
    Updated Nov 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darien Schettler (2023). AQuA-RAT [Dataset]. https://www.kaggle.com/datasets/dschettler8845/aqua-rat/versions/1
    Explore at:
    zip(92621800 bytes)Available download formats
    Dataset updated
    Nov 25, 2023
    Authors
    Darien Schettler
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Darien Schettler

    Released under Apache 2.0

    Contents

  7. h

    aqua-rat

    • huggingface.co
    Updated Sep 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quzhe Huang (2025). aqua-rat [Dataset]. https://huggingface.co/datasets/quzhe/aqua-rat
    Explore at:
    Dataset updated
    Sep 6, 2025
    Authors
    Quzhe Huang
    Description

    quzhe/aqua-rat dataset hosted on Hugging Face and contributed by the HF Datasets community

  8. AQUA-RAT Algebra Question Answering with Rationale

    • kaggle.com
    zip
    Updated Jan 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jérøme E. Blanch∑xt (2020). AQUA-RAT Algebra Question Answering with Rationale [Dataset]. https://www.kaggle.com/datasets/jeromeblanchet/aquarat-algebra-question-answering-with-rationale/code
    Explore at:
    zip(32198218 bytes)Available download formats
    Dataset updated
    Jan 26, 2020
    Authors
    Jérøme E. Blanch∑xt
    Description

    Now that I have your attention, please up-vote this dataset and read the following!!!

    AQUA-RAT (Algebra Question Answering with Rationales) Dataset

    This dataset contains the algebraic word problems with rationales described in our paper:

    Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. (2017) Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems. In Proc. ACL. https://arxiv.org/pdf/1705.04146.pdf

    The dataset consists of about 100,000 algebraic word problems with natural language rationales. Each problem is a json object consisting of four parts:

    question - A natural language definition of the problem to solve options - 5 possible options (A, B, C, D and E), among which one is correct rationale - A natural language description of the solution to the problem correct - The correct option

    Here is an example of a problem object:

    { "question": "A grocery sells a bag of ice for $1.25, and makes 20% profit. If it sells 500 bags of ice, how much total profit does it make?", "options": ["A)125", "B)150", "C)225", "D)250", "E)275"], "rationale": "Profit per bag = 1.25 * 0.20 = 0.25 Total profit = 500 * 0.25 = 125 Answer is A.", "correct": "A" }

    Files

    train.json -> untokenized training set train.tok.json -> tokenized training set dev.json -> untokenized development set dev.tok.json -> tokenized development set test.json -> untokenized test set test.tok.json -> tokenized test set

    Note

    This dataset has been fully crowdsourced, as described using the technique in the paper (Ling et al., 2017). The initial published results included in the paper were derived from a previous version of this dataset that cannot be released in full, and results using the published system will differ. Results using our published system will be forthcoming.

    Source

    https://github.com/deepmind/AQuA

    https://media.giphy.com/media/YknAouVrcbkiDvWUOR/giphy.gif" alt="Alt Text"> https://media.giphy.com/media/26xBtSyoi5hUUkCEo/giphy.gif" alt="Alt Text"> https://media.giphy.com/media/4LiMmbAcvgTQs/giphy.gif" alt="Alt Text"> https://media.giphy.com/media/3o6Ztg5jGKDQSjaZ1K/giphy.gif" alt="Alt Text">

  9. h

    aquarat

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IdeaCode AI, aquarat [Dataset]. https://huggingface.co/datasets/ideacode/aquarat
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    IdeaCode AI
    Description

    DeepMind AQUA Rat Converted Dataset

    This dataset is a refined version of the original DeepMind AQUA-RAT benchmark. Originally designed as a multiple-choice question-answering dataset, AQUA-RAT has been transformed in this version to require a numerical answer in many cases.

      Overview
    

    Conversion Approach:
    Approximately two-thirds of the dataset now requires a single numerical answer.
    For questions that are harder to convert to a single verifiable answer, the original… See the full description on the dataset page: https://huggingface.co/datasets/ideacode/aquarat.

  10. MathQA (Math Problems)

    • kaggle.com
    zip
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). MathQA (Math Problems) [Dataset]. https://www.kaggle.com/datasets/thedevastator/dataset-for-solving-math-word-problems/versions/2
    Explore at:
    zip(6951492 bytes)Available download formats
    Dataset updated
    Nov 21, 2022
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    MathQA (Math Problems)

    Learning to solve math problems

    Source

    Huggingface Hub: link

    About this dataset

    We introduce a large-scale dataset of math word problems. Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset with fully-specified operational programs. AQuA-RAT has provided the questions, options, rationale, and the correct options.

    Research Ideas

    • A math word problem solving model can be trained on this dataset in order to better understand how to solve math word problems.
    • This dataset can be used to develop new methods for automatically annotating math word problems with fully-specified operational programs.
    • This dataset can be used as a benchmark for evaluating the performance of various methods for solving math word problems

    Acknowledgements

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: validation.csv | Column name | Description | |:----------------------|:----------------------------------------------------------| | Problem | The math word problem. (String) | | Rationale | The rationale for the math word problem. (String) | | options | The options for the math word problem. (List of strings) | | correct | The correct option for the math word problem. (String) | | annotated_formula | The annotated formula for the math word problem. (String) | | linear_formula | The linear formula for the math word problem. (String) | | category | The category for the math word problem. (String) |

    File: train.csv | Column name | Description | |:----------------------|:----------------------------------------------------------| | Problem | The math word problem. (String) | | Rationale | The rationale for the math word problem. (String) | | options | The options for the math word problem. (List of strings) | | correct | The correct option for the math word problem. (String) | | annotated_formula | The annotated formula for the math word problem. (String) | | linear_formula | The linear formula for the math word problem. (String) | | category | The category for the math word problem. (String) |

    File: test.csv | Column name | Description | |:----------------------|:----------------------------------------------------------| | Problem | The math word problem. (String) | | Rationale | The rationale for the math word problem. (String) | | options | The options for the math word problem. (List of strings) | | correct | The correct option for the math word problem. (String) | | annotated_formula | The annotated formula for the math word problem. (String) | | linear_formula | The linear formula for the math word problem. (String) | | category | The category for the math word problem. (String) |

  11. deepmind-aqua_rat-processed

    • kaggle.com
    zip
    Updated Sep 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruby Hartono (2025). deepmind-aqua_rat-processed [Dataset]. https://www.kaggle.com/datasets/rubyhartono/deepmind-aqua-rat-processed
    Explore at:
    zip(15539932 bytes)Available download formats
    Dataset updated
    Sep 14, 2025
    Authors
    Ruby Hartono
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset from https://huggingface.co/datasets/deepmind/aqua_rat

    add new column "encoded_label" with mapping:

    Label Encoding Mapping: {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4}

  12. math_qa

    • huggingface.co
    • opendatalab.com
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ai2 (2024). math_qa [Dataset]. https://huggingface.co/datasets/allenai/math_qa
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset provided by
    Allen Institute for AIhttp://allenai.org/
    Authors
    Ai2
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset. AQuA-RAT has provided the questions, options, rationale, and the correct options.

  13. h

    aquarat-scored

    • huggingface.co
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laurentiu Petrea (2024). aquarat-scored [Dataset]. https://huggingface.co/datasets/laurentiubp/aquarat-scored
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 26, 2024
    Authors
    Laurentiu Petrea
    Description

    laurentiubp/aquarat-scored dataset hosted on Hugging Face and contributed by the HF Datasets community

  14. h

    MathQA - Dataset - 海数据

    • haidatas.com
    Updated Feb 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). MathQA - Dataset - 海数据 [Dataset]. https://haidatas.com/dataset/mathqa
    Explore at:
    Dataset updated
    Feb 11, 2025
    Description

    本数据集是通过使用一种新的表示语言对 AQuA-RAT 数据集进行注释来收集的。 AQuA-RAT 提供了问题、选项、理由和正确选项。

  15. h

    AquaRat

    • huggingface.co
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LiSoViMa (2025). AquaRat [Dataset]. https://huggingface.co/datasets/LiSoViMa/AquaRat
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    LiSoViMa
    Description

    LiSoViMa/AquaRat dataset hosted on Hugging Face and contributed by the HF Datasets community

  16. h

    reformatted-aquarat

    • huggingface.co
    Updated Apr 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sushant Dagaji Desale (2025). reformatted-aquarat [Dataset]. https://huggingface.co/datasets/MrMaxMind99/reformatted-aquarat
    Explore at:
    Dataset updated
    Apr 19, 2025
    Authors
    Sushant Dagaji Desale
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    MrMaxMind99/reformatted-aquarat dataset hosted on Hugging Face and contributed by the HF Datasets community

  17. h

    Judgement-baseline

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sleeping AI, Judgement-baseline [Dataset]. https://huggingface.co/datasets/sleeping-ai/Judgement-baseline
    Explore at:
    Dataset authored and provided by
    Sleeping AI
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Model Name

    Params

    MMLU-Pro-Plus Baseline Drop MMLU-Pro Baseline Drop Added Exp MMLU Pro Plus Added MMLU-redux 2.0 Baseline Drop AQUA-RAT Baseline Drop

    CohereLabs/c4ai-command-a-03-2025 111B ✅ (single inference) ✅ done ✅ (HF naive batch) ✅ done ✅ done

    -

    -

    -

    google/gemma-3-12b-it 12B ✅ (HF naive batch) ✅ done ✅ (HF naive batch) ✅ done ✅ done

    -

    -

    -

    meta-llama/Llama-4-Scout-17B-16E 17B ✅ (HF naive batch) ✅ done ✅ (HF naive batch) ✅ done ✅ done

    -

    -

    -

    Qwen/Qwen3-4B 4B… See the full description on the dataset page: https://huggingface.co/datasets/sleeping-ai/Judgement-baseline.

  18. h

    aquarat-sft-gt-stylized-modified

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emil Ryd, aquarat-sft-gt-stylized-modified [Dataset]. https://huggingface.co/datasets/EmilRyd/aquarat-sft-gt-stylized-modified
    Explore at:
    Authors
    Emil Ryd
    Description

    EmilRyd/aquarat-sft-gt-stylized-modified dataset hosted on Hugging Face and contributed by the HF Datasets community

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Johnson chong (2024). Math-QA for AQuA-RAT dataset [Dataset]. https://www.kaggle.com/datasets/johnsonhk88/math-qa-for-aqua-rat-dataset
Organization logo

Math-QA for AQuA-RAT dataset

Explore at:
zip(7476954 bytes)Available download formats
Dataset updated
May 21, 2024
Authors
Johnson chong
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset. AQuA-RAT has provided the questions, options, rationale, and the correct options.

• Question: A train running at the speed of 48 km / hr crosses a pole in 9 seconds . what is the length of the train ? • Rationale: Speed = ( 48 x 5 / 18 ) m / sec = ( 40 / 3 ) m / sec . length of the train = ( speed x time ) . length of the train = ( 40 / 3 x 9 ) m = 120 m . answer is c . • Options: a ) 140 , b ) 130 , c ) 120 , d ) 170 , e ) 160 • Correct Option is: C

The rationales are noisy, incomplete and sometimes incorrect. We correct these rationales and provide stepwise solutions for a portion of AQuA-RAT.

• Our Annotated Formula: multiply(divide(multiply(48, const_1000), const_3600), 9)

Search
Clear search
Close search
Google apps
Main menu