Download link to ArcGIS Pro 2.5: see https://drive.google.com/file/d/1IxWetAP875KQbm4HXBCdluvFE_yLfp3u/view?usp=sharing
The way to access Layers Quickly.
Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11
To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.
Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.
Installation:
After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
1. Open ArcGIS Pro
2. Project -> Add-In Manager -> Options
3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar
The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contents: This is an ArcGIS Pro zip file that you can download and use for creating map books based on United States National Grid (USNG). It contains a geodatabase, layouts, and tasks designed to teach you how to create a basic map book.Version 1.0.0 Uploaded on May 24th and created with ArcGIS Pro 2.1.3 - Please see the README below before getting started!Updated to 1.1.0 on August 20thUpdated to 1.2.0 on September 7thUpdated to 2.0.0 on October 12thUpdate to 2.1.0 on December 29thBack to 1.2.0 due to breaking changes in the templateBack to 1.0.0 due to breaking changes in the template as of June 11th 2019Updated to 2.1.1 on October 8th 2019Audience: GIS Professionals and new users of ArcGIS Pro who support Public Safety agencies with map books. If you are looking for apps that can be used by any public safety professional, see the USNG Lookup Viewer.Purpose: To teach you how to make a map book with critical infrastructure and a basemap, based on USNG. You NEED to follow the steps in the task and not try to take shortcuts the first time you use this task in order to receive the full benefits. Background: This ArcGIS Pro template is meant to be a starting point for your map book projects and is based on best practices by the USNG National Implementation Center (TUNIC) at Delta State University and is hosted by the NAPSG Foundation. This does not replace previous templates created in ArcMap, but is a new experimental approach to making map books. We will continue to refine this template and work with other organizations to make improvements over time. So please send us your feedback admin@publicsafetygis.org and comments below. Instructions: Download the zip file by clicking on the thumbnail or the Download button.Unzip the file to an appropriate location on your computer (C:\Users\YourUsername\Documents\ArcGIS\Projects is a common location for ArcGIS Pro Projects).Open the USNG Map book Project File (APRX).If the Task is not already open by default, navigate to Catalog > Tasks > and open 'Create a US National Grid Map Book' Follow the instructions! This task will have some automated processes and models that run in the background but you should pay close attention to the instructions so you also learn all of the steps. This will allow you to innovate and customize the template for your own use.FAQsWhat is US National Grid? The US National Grid (USNG) is a point and area reference system that provides for actionable location information in a uniform format. Its use helps achieve consistent situational awareness across all levels of government, disciplines, and threats & hazards – regardless of your role in an incident.One of the key resources NAPSG makes available to support emergency responders is a basic USNG situational awareness application. See the NAPSG Foundation and USNG Center websites for more information.What is an ArcGIS Pro Task? A task is a set of preconfigured steps that guide you and others through a workflow or business process. A task can be used to implement a best-practice workflow, improve the efficiency of a workflow, or create a series of interactive tutorial steps. See "What is a Task?" for more information.Do I need to be proficient in ArcGIS Pro to use this template? We feel that this is a good starting point if you have already taken the ArcGIS Pro QuickStart Tutorials. While the task will automate many steps, you will want to get comfortable with the map layouts and other new features in ArcGIS Pro.Is this template free? This resources is provided at no-cost, but also with no guarantees of quality assurance or support at this time. Can't I just use ArcMap? Ok - here you go. USNG 1:24K Map Template for ArcMapKnown Limitations and BugsZoom To: It appears there may be a bug or limitation with automatically zooming the map to the proper extent, so get comfortable with navigation or zoom to feature via the attribute table.FGDC Compliance: We are seeking feedback from experts in the field to make sure that this meets minimum requirements. At this point in time we do not claim to have any official endorsement of standardization. File Size: Highly detailed basemaps can really add up and contribute to your overall file size, especially over a large area / many pages. Consider making a simple "Basemap" of street centerlines and building footprints.We will do the best we can to address limitations and are very open to feedback!
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.Lidar data have become an important source for detailed 3D information for cities as well as forestry, agriculture, archaeology, and many other applications. Topographic lidar surveys, which are conducted by airplane, helicopter or drone, produce data sets that contain millions or billions of points. This can create challenges for storing, visualizing and analyzing the data. In this tutorial you will learn how to create a LAS Dataset and explore the tools available in ArcGIS Pro for visualizing lidar data.To download the tutorial and data folder, click the Open button to the top right. This will download a ZIP file containing the tutorial documents and data files.Software & Solutions Used: ArcGIS Pro Advanced 3.x. Last tested with ArcGIS Pro version 3.3. Time to Complete: 30 - 60 minsFile Size: 337 MBDate Created: August 2020Last Updated: March 2024
Yarrrrrrrr maps are too crisp and clean! You need a hand-painted grubby tattered treasure map from antiquity to make yer point. Download this here style for ArrrrrrcGIS Pro and be off to makin dern-near realistic maps ready for an eager public (or set designerrrr).To be used in conjunction with these tattered paper assets, available here (seriously, it's a pretty important bit). Or you can use them with an assortment of paper textures, available in Living Atlas here.Also, there's two cool hand-inked looking north arrows in the style. You can see them in the sample maps above.Happy Mapping! John Nelson
Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson
Last Update: 9/5/2024, Requires ArcGIS Pro 3.2.xThis is a file structure with ArcGIS Pro project and layout templates for supporting Urban Search and Rescue Teams in 2024. It points to the latest feature layers and is based on the NWCG Wildfire GIS templates.Updates to this project can be found in the Read Me text document in the root folder of the template after downloading. Some patch notes can also be found below in the comments.Special thanks to NIFC and the Wildfire GIS Community for the starting template. For more documentation see NWCG Standards for Geospatial Operations, PMS 936 | NWCGYOU WILL NOT BE ABLE TO ACCESS any incident data unless you are a member of the NSARGC Group.If the template brings you to a screen saying "Invalid Token", you may need to try downloading it again. How to deploy templateThis template is not a traditional ArcGIS Pro template. When you download this template, you are downloading the full folder structure, pre-made map projects, layouts, databases, and tools that have been designed to work alongside SARCOP. This "template" does not use the "Create a project from a template" workflow within Pro, rather you are downloading the full project, and it can be modified as you see fit from there. Below are the recommended steps to take to deploy the template.Download the template anywhere on your PC by clicking the Download button on the top right below Sign In and Overview. This will download as a Zipped folder, likely to your Downloads folder.Go to the C drive of your computer and create a new folder called "Incidents", then create another folder within that Incidents folder with the name of the incident you are using the template for. For example, if the incident name is "Hurricane Lisa", the folder path should look something like "C:\Incidents\2024xxxx_HurricaneLisa".Extract the zipped folder contents from step 1 to that new incident folder you created in step 2. In the Hurricane Lisa example, data would be extracted to C:\Incidents\2024xxxx_HurricaneLisa.Go to the newly extracted folders and find the Projects folder. Open that and double click on any APRX file to begin work.
Last Update: 06/18/2025 with v10 launch and Reverse Geocode HotfixRequires ArcGIS Pro 3.3.xThis is a file structure with ArcGIS Pro project and layout templates for supporting Urban Search and Rescue Teams in 2024. It points to the latest feature layers and is based on the NWCG Wildfire GIS templates.Updates to this project can be found in the Read Me text document in the root folder of the template after downloading. Some patch notes can also be found below in the comments.Special thanks to NIFC and the Wildfire GIS Community for the starting template. For more documentation see NWCG Standards for Geospatial Operations, PMS 936 | NWCGYOU WILL NOT BE ABLE TO ACCESS any incident data unless you are a member of the NSARGC Group.If the template brings you to a screen saying "Invalid Token", you may need to try downloading it again. How to deploy templateThis template is not a traditional ArcGIS Pro template. When you download this template, you are downloading the full folder structure, pre-made map projects, layouts, databases, and tools that have been designed to work alongside SARCOP. This "template" does not use the "Create a project from a template" workflow within Pro, rather you are downloading the full project, and it can be modified as you see fit from there. Below are the recommended steps to take to deploy the template.Download the template anywhere on your PC by clicking the Download button on the top right below Sign In and Overview. This will download as a Zipped folder, likely to your Downloads folder.Go to the C drive of your computer and create a new folder called "Incidents", then create another folder within that Incidents folder with the name of the incident you are using the template for. For example, if the incident name is "Hurricane Lisa", the folder path should look something like "C:\Incidents\2024xxxx_HurricaneLisa".Extract the zipped folder contents from step 1 to that new incident folder you created in step 2. In the Hurricane Lisa example, data would be extracted to C:\Incidents\2024xxxx_HurricaneLisa.Go to the newly extracted folders and find the Projects folder. Open that and double click on any APRX file to begin work.
Download In State Plane Projection Here The 2024 Parcel Fabric Data is a copy of the Lake County Chief Assessor's Office spatial dataset, consisting of separate layers which represent the boundaries for Tax Parcels, Lots, Units, Subs, Condos, Rights of Way, and Encumbrance parcels, along with points, lines, and PLSS townships for reference, which have all been captured for the 2024 Tax Year.This data is spatial in nature and does not include extensive fields of attributes to which each layer may be associated. This data is provided for use to individuals or entities with an understanding of Esri's ArcGIS Pro (specifically the Parcel Fabric), and those with access to ArcGIS Pro, which is necessary to view or manipulate the data.Casual users can find the standalone Tax Parcel Boundary Data here and Parcel Attribute Data here. Update Frequency: This dataset is updated on a yearly basis.
Follow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.
I'd like you to make downloading, implementing, and sharing the output of, this felt-tastic style your new highest priority.So what do you get when you download this style, besides a rush of craft-induced adrenaline? These symbols...I've seeded the style with some pre-colored symbols but each and every one of these felty symbols can be dyed whatever color you want in the symbology panel. Here are some example maps using this style...Happy Mapping! John Nelson
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Purpose: This is an ArcGIS Pro template that GIS Specialists can use to identify vulnerable populations and special needs infrastructure most at risk to flooding events.How does it work?Determine and understand the Place Vulnerability (based on Cutter et al. 1997) and the Special Needs Infrastructure for an area of interest based on Special Flood Hazard Zones, Social Vulnerability Index, and the distribution of its Population and Housing units. The final product will be charts of the data distribution and a Hosted Feature Layer. See this Story Map example for a more detailed explanation.This uses the FEMA National Flood Hazard Layer as an input (although you can substitute your own flood hazard data), check availability for your County before beginning the Task: FEMA NFHL ViewerThe solution consists of several tasks that allow you to:Select an area of interest for your Place Vulnerability Analysis. Select a Hazard that may occur within your area of interest.Select the Social Vulnerability Index (SVI) features contained within your area of interest using the CDC’s Social Vulnerability Index (SVI) – 2016 overall SVI layer at the census tract level in the map.Determine and understand the Social Vulnerability Index for the hazard zones identified within you area of interest.Identify the Special Needs Infrastructure features located within the hazard zones identified within you area of interest.Share your data to ArcGIS Online as a Hosted Feature Layer.FIRST STEPS:Create a folder C:\GIS\ if you do not already have this folder created. (This is a suggested step as the ArcGIS Pro Tasks does not appear to keep relative paths)Download the ZIP file.Extract the ZIP file and save it to the C:\GIS\ location on your computer. Open the PlaceVulnerabilityAnalysis.aprx file.Once the Project file (.aprx) opens, we suggest the following setup to easily view the Tasks instructions, the Map and its Contents, and the Databases (.gdb) from the Catalog pane.The following public web map is included as a Template in the ArcGIS Pro solution file: Place Vulnerability Template Web MapNote 1:As this is a beta version, please take note of some pain points:Data input and output locations may need to be manually populated from the related workspaces (.gdb) or the tools may fail to run. Make sure to unzip/extract the file to the C:\GIS\ location on your computer to avoid issues.Switching from one step to the next may not be totally seamless yet.If you are experiencing any issues with the Flood Hazard Zones service provided, or if the data is not available for your area of interest, you can also download your Flood Hazard Zones data from the FEMA Flood Map Service Center. In the search, use the FEMA ID. Once downloaded, save the data in your project folder and use it as an input.Note 2:In this task, the default hazard being used are the National Flood Hazard Zones. If you would like to use a different hazard, you will need to add the new hazard layer to the map and update all query expressions accordingly.For questions, bug reports, or new requirements contact pdoherty@publicsafetygis.org
Please note, the updated version of this toolbox is now available for download on this page. The COVID-19-Modeling-v1.zip file contains version 5 of the toolbox with updated documentation. Version 5 of the toolbox updates the CHIME Model v1.1.5 tool. The COVID-19Surge (CDC) model is unchanged in this version.More information about the toolbox can be found in the toolbox document. More information about the CHIME Model v1.1.5 tool, including the change log, can be found in the tool documentation and this video.More information about the COVID-19Surge (CDC) tool is included in the tool documentation and this video. CHIME Model v1.1.5 ToolVersion 4 - Updated 11 MAY 2020An implementation of Penn Medicine’s COVID-19 Hospital Impact Model for Epidemics (CHIME) for use in ArcGIS Pro 2.3 or later. This tool leverages SIR (Susceptible, Infected, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation. Version 4 of this tool is based on CHIME v1.1.5 (2020-05-07). Learn more about how CHIME works.Version 4 contains the following updates:Updated the CHIME tool from CHIME v1.1.2 to CHIME v1.1.5.Added a new parameter called Date of Social Distancing Measures Effect to specify the date when social distancing measures started showing their effects.Added a new parameter called Recovery to specify the number of recovered cases at the start of the model.COVID-19Surge (CDC) ToolVersion 1 - Released 04 MAY 2020An implementation of Centers for Disease Control and Prevention’s (CDC) COVID-19Surge for use in ArcGIS Pro 2.3 or later. This tool leverages SIICR (Susceptible, Infected, Infectious, Convalescing, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation based on the extent to which mitigation strategies such as social distancing or shelter-in-place recommendations are implemented. This tool is based on COVID-19Surge. Learn more about how COVID-19Surge works.Potential ApplicationsThe illustration above depicts the outputs of the COVID-19Surge (CDC) tool of the COVID-19 Modeling toolbox.A hospital systems administrator needs a simple model to project the number of patients the hospitals in the network will need to accommodate in the next 90 days due to COVID-19. You know the population served by each hospital, the date and level of current social distancing, the number of people who have recovered, and the number of patients that are currently hospitalized with COVID-19 in each facility. Using your hospital point layer, you run the CHIME Model v1.1.5 tool.An aid agency wants to estimate where and when resources will be required in the counties you serve. You know the population and number of COVID-19 cases today and 14 days ago in each county. You run the COVID-19Surge (CDC) tool using your county polygon data, introducing an Intervention Policy and New Infections Per Case (R0) driven by fields to account for differences in anticipated social distancing policies and effectiveness between counties.A county wants to understand how the lessening or removal of interventions may impact hospital bed availability within the county. You run the CHIME Model v1.1.5 and COVID-19Surge (CDC) tool, checking Add Additional Web App Fields in Summary in both tools. You display the published results from each tool in the Capacity Analysis configurable app so estimates can be compared between models.This toolbox requires any license of ArcGIS Pro 2.3 or higher in order to run. Steps for upgrading ArcGIS Pro can be found here.For questions, comments and support, please visit our COVID-19 GeoNet community.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Collection of multispectral imagery from an aerial sensor is a means to obtain plot-level vegetation index (VI) values; however, post-capture image processing and analysis remain a challenge for small-plot researchers. An ArcGIS Pro workflow of two task items was developed with established routines and commands to extract plot-level VI values (Normalized Difference VI, Ratio VI, and Chlorophyll Index-Red Edge) from multispectral aerial imagery of small-plot turfgrass experiments. Users can access and download task item(s) from the ArcGIS Online platform for use in ArcGIS Pro. The workflow standardizes the processing of aerial imagery to ensure repeatability between sampling dates and across site locations. A guided workflow saves time with assigned commands, ultimately allowing users to obtain a table with plot descriptions and index values within a .csv file for statistical analysis. The workflow was used to analyze aerial imagery from a small-plot turfgrass research study evaluating herbicide effects on St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] grow-in. To compare methods, index values were extracted from the same aerial imagery by TurfScout, LLC and were obtained by handheld sensor. Index values from the three methods were correlated with visual percentage cover to determine the sensitivity (i.e., the ability to detect differences) of the different methodologies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
Actualiteit: januari 2023Requirements: ArcGIS Pro 2.0 of hoger Inhoud van de download:Add-in voor ArcGIS Pro 2.XAdd-in voor ArcGIS Pro 3De Esri Nederland Content Add-In voor ArcGIS Pro geeft in één overzicht direct toegang tot alle content aangeboden door Esri Nederland. Download de Add-In via de 'Downloaden'-knop. Pak vervolgens het zip-bestand uit op een willekeurige locatie en dubbelklik het resulterende 'EsriNLContent.esriAddinX'-bestand. Klik vervolgens op 'Install Add-In' om de Add-In te installeren. Vanaf nu is de Add-In bovenin de balk van ArcGIS Pro onder 'Esri Nederland' te vinden. Mocht de Add-In niet zichtbaar zijn, start ArcGIS Pro dan opnieuw op en kijk nogmaals in de balk bovenin.Naast deze checklist stelt Esri Nederland andere handleidingen en tools beschikbaar via de How-to pagina op de Esri Nederland ContentHub en de gebruiker Esri_NL_Tools.Deze Add-In wordt aangeboden vanuit Esri Nederland Content. Esri Nederland Content biedt landsdekkende data en services aan die gebruikt kunnen worden in het ArcGIS-platform. Het content-team actualiseert het aanbod en voegt geregeld nieuwe content toe. Door content van Esri Nederland te combineren met andere gegevens creëert u snel en eenvoudig nieuwe informatieproducten. Meer informatie over het content aanbod is te vinden via: esri.nl/content. Heeft u vragen of opmerkingen dan horen wij dat graag via content@esri.nl. Blijf op de hoogte van het laatste content-nieuws via de Esri Nederland Content Hub.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.
ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
Download link to ArcGIS Pro 2.5: see https://drive.google.com/file/d/1IxWetAP875KQbm4HXBCdluvFE_yLfp3u/view?usp=sharing