Ground response--GIS data, June 2010. Downloadable GIS data includes: One ESRI ArcGIS 9.3 geodatabase, consisting of a set of 4 feature classes; Metadata for each feature class, in HTML format (for ease of reading outside of GIS software); One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap; One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in the free ArcGIS Explorer (as well as ArcMap); README file
Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
License information was derived automatically
The data has been automatically extracted from OSM and transformed to a full functional Network Dataset with a tool written by Eva Peters. For more information on the tool and Evas thesis click here (German) or here (English). Check out all functions like routing, service area, cost matrix etc. Get further Information on Network Analyst in the ArcGIS Desktop Help.
This map was last updated March 2014. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes NASA Blue Marble: Next Generation 500m resolution imagery at small scales (above 1:1,000,000), i-cubed 15m eSAT imagery at medium-to-large scales (down to 1:70,000) for the world, and USGS 15m Landsat imagery for Antarctica. The map features 0.3m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world, with concentrations in South America, Eastern Europe, India, Japan, the Middle East and Northern Africa, Southern Africa, Australia, and New Zealand. In other parts of the world, 1 meter resolution imagery is available from GeoEye IKONOS, Getmapping, AeroGRID, IGN Spain, and IGP Portugal. Additionally, imagery at different resolutions has been contributed by the GIS User Community. To view this map service now, along with useful reference overlays, click here to open the Imagery with Labels web map.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Imagery or Imagery with Labels from the Basemap control to start browsing the imagery. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.The coverage for Europe includes AeroGRID 1m resolution imagery for Belgium, France (Region Nord-Pas-de-Calais only), Germany, Luxembourg, and The Netherlands and 2m resolution imagery for the Czech Republic, plus 1m resolution imagery for Portugal from the Instituto Geográfico Português.For details on the coverage in this map service, view the list of Contributors for the World Imagery Map.View the coverage map below to learn more about the coverage for the high-resolution imagery:Updated imagery coverage map: Areas updated in the most recent release. World coverage map: Areas with high-resolution imagery throughout the world.Metadata: This service is metadata-enabled. With the Identify tool in ArcMap or the ArcGIS Online Content Viewer, you can see the resolution, collection date, and source of the imagery at the location you click. The metadata applies only to the best available imagery at that location. You may need to zoom in to view the best available imagery.Reference overlays: The World Boundaries and Places service is designed to be drawn on top of this service as a reference overlay. This is what gets drawn on top of the imagery if you choose the Imagery With Labels basemap in any of the ArcGIS clients.The World Transportation service is designed to be drawn on top of this service to provide street labels when you are zoomed in and streets and roads when you are zoomed out.There are three ready to use web maps that use the World Imagery service as their basemap, Imagery, in which both reference layers are turned off, Imagery with Labels, which has World Boundaries and Places turned on but World Transportation turned off, and Imagery with Labels and Transportation, which has both reference layers turned on.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.ArcGIS Desktop use: This service requires ArcGIS 9.3 or more recent.The World Imagery map service is not available as a globe service. If you need a globe service containing imagery use the Prime Imagery (3D) globe service. However note that this is no longer being updated by Esri.Tip: Here are some famous locations as they appear in this map service. The following URLs launch the Imagery With Labels and Transportation web map (which combines this map service with the two reference layers designed for it) and take you to specific locations on the map using location parameters included in the URL.Grand Canyon, Arizona, USAGolden Gate, California, USATaj Mahal, Agra, IndiaVatican CityBronze age white horse, Uffington, UKUluru (Ayres Rock), AustraliaMachu Picchu, Cusco, PeruOkavango Delta, BotswanaScale Range: 1:591,657,528 down to 1:1,128Coordinate System: Web Mercator Auxiliary Sphere (WKID 102100)Tiling Scheme: Web Mercator Auxiliary SphereMap Service Name: World_ImageryArcGIS Desktop/Explorer URL: http://services.arcgisonline.com/arcgis/services ArcGIS Desktop files: MXD LYR (These ready-to-use files contain this service and associated reference overlay services. ArcGIS 9.3 or more recent required).ArcGIS Server Manager and Web ADF URL: http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServerREST URL for ArcGIS Web APIs: http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServerSOAP API URL: http://services.arcgisonline.com/ArcGIS/services/World_Imagery/MapServer?wsdl
This map was last updated April 2014. This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on land cover and shaded relief imagery for added context. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri or any governing authority.The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; the continental United States and Hawaii; Canada; Mexico; most of the Middle East; South America and Central America. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA) , U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, DeLorme, HERE, and Esri. Data for Africa from ~1:288k to ~1:4k (~1:1k in select areas) was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.The data for the World Topographic Map is provided by the GIS community. You can contribute your data to this service and have it served by Esri. For details on the coverage in this map and the users who contributed data for this map via the Community Maps Program, view the list of Contributors for the World Topographic Map.Feedback: Have you ever seen a problem in the Esri World Topographic Map community basemap that you wanted to see fixed? You can use the Topographic Map Feedback web map to provide feedback on issues or errors that you see in the Esri World Topographic Map. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.Scale Range: 1:591,657,528 down to 1:1,128Coordinate System: Web Mercator Auxiliary Sphere (WKID 102100)Tiling Scheme: Web Mercator Auxiliary SphereMap Service Name: World_Topo_MapArcGIS Desktop/Explorer URL: http://services.arcgisonline.com/arcgis/servicesArcGIS Desktop files: MXD LYR 3DD (ArcGIS 9.3 or more recent required)ArcGIS Server Manager and Web ADF URL: http://server.arcgisonline.com/arcgis/services/World_Topo_Map/MapServerREST URL for ArcGIS Web APIs: http://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServerSOAP API URL: http://services.arcgisonline.com/ArcGIS/services/World_Topo_Map/MapServer?wsdl
Downloadable Zip File (GIS Data 444K). Link Function: 375-- download.
NOTE: This map is in Mature Support and is no longer updated. Use World_Street_Map (ArcGIS 9.3 or higher is required) to access the latest updates.This worldwide street map presents highway-level data for the world and street-level data for the United States, Canada, Europe, Southern Africa and elsewhere. This comprehensive street map includes highways, major roads, minor roads, railways, water features, administrative boundaries, cities, parks, and landmarks, overlaid on shaded relief imagery for added context. The street map was developed by Esri using DeLorme data and NAVTEQ street data. Coverage for street-level data elsewhere in the world includes Mexico (Mexico City only), Russia (Moscow, St. Petersburg only), and Turkey (Istanbul, Ankara only).Scale Range: 1:147,748,799 down to 1:4,509Coordinate System: Geographic (Latitude-Longitude)Tiling Scheme: ArcGIS OnlineMap Service Name: ESRI_StreetMap_World_2DArcGIS Desktop/Explorer URL: http://services.arcgisonline.com/arcgis/servicesArcGIS Server Manager and Web ADF URL: http://server.arcgisonline.com/arcgis/services/ESRI_StreetMap_World_2D/MapServerREST URL for ArcGIS Web APIs: http://server.arcgisonline.com/ArcGIS/rest/services/ESRI_StreetMap_World_2D/MapServerSOAP API URL: http://services.arcgisonline.com/ArcGIS/services/ESRI_StreetMap_World_2D/MapServer?wsdlPublication Date: October 2008Update Frequency: None planned
This FREE extension enables discovering and using GIS resources available in a GEOSS Clearinghouse directly from ArcGIS Desktop and ArcGIS Explorer. The CS-W Client for ArcGIS can search many implementations of CS-W implementing CS-W 2.0.0, 2.0.1, 2.0.2 and a number of Application Profiles (OGCCORE, APISO, EBRIM). Providers can extend the CS-W Client by creating a profile of their CS-W service and including that in the CS-W client configuration. View the title, abstract, or footprints of search results or view and download the full metadata. Add referenced live map services (ArcGIS Server, ArcIMS, WMS) to an ArcMap document or ArcGIS Explorer globe. ArcGIS Desktop 9.3 is required to install the ArcMap component of the CS-W Clients for ArcGIS. The CS-W Clients for ArcGIS component for ArcGIS Explorer requires ArcGIS Explorer 380 or higher.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.
Aerial digital ortho-photography was the foundation imagery for map development. For Abó, the photography was acquired on April May 15, 2002 at a scale of approximately 1:3,000; for Quarai and Gran Quivira it was flown on April 2, 2003 at scales of 1:3,600 and 1:3000, respectively. The 2002-03 digital imagery has a base pixel resolution of 1.0 m. We also made use of statewide 1-meter resolution, true-color imagery from 2005 that became available in 2006 through the New Mexico Resource Geographic Information System. A 10 m spatial resolution USGS Digital Elevation Model (DEM) was used, in conjunction with ground data, to help discriminate between vegetation types based on elevation gradients and terrain. All imagery and other spatial data layers were compiled into a geodatabase and GIS using ArcGIS 9.3 (ESRI 2008).
description: This map is in Extended Support and is no longer updated. Esri recommends that you use World_Imagery instead (ArcGIS 9.3 or higher is required).; abstract: imagery, satellite, aerial, 500m (World), 15m (World), 15m (Antarctica), 1m (World Cities), 1m (United States), CONUS, IKONOSimageryBaseMapsEarthCover (Imagery, basemaps, and land cover)World Imagery
description: This map is in Extended Support and is no longer updated. Esri recommends that you use World_Street_Map instead (ArcGIS 9.3 or higher is required).; abstract: streets, highways, major roads, minor roads, railways, water features, administrative boundaries, cities, parks, protected areas, landmarkstransportation(Transportation Networks)World Street Map
The ArcGIS 9.3. software was used for the creation of habitat maps. The different types of habitats have been identified through the interpretation of aerial photos of the affected areas in a 1:2,500 video scale with insights also on a scale of 1:1,000. The use of such precise scales has allowed, thanks also to the excellent quality of the images, to define in greater detail not only the physiognomic aspects (for example precise delimitation between areas of gravel and cliff areas) but also aspects concerning the type of habitats (for example, it was possible to recognise in many cases the different types of subalpine and alpine lands). The map base used is that of the Regional Technical Charter (CTR2003) on a scale of 1:10.000. In order to assign any correspondence between the different types found with the habitats defined by Directive 92/43 (N2000), the following documents were used as a reference: Corine Biotopes manual — Habitats of the European Community (1991), key to reading Corine Biotopes; · Italian Habitats Interpretation Manual of Directive 92/43/EEC, available online at http://unipg.it/habitat/; Manuel d’interprétation des habitats de l’Union Européenne (1996), key to reading the habitats included in Annex I to Directive 92/43/EEC; · Guide des milieux naturels de Suisse (Delarze R. & Gonseth Y., 2008), also useful for the definition and recognition of the habitats of the Alpine territories bordering Switzerland; Habitats according to the EUNIS nomenclature: classification manual for Italian reality (APAT — Reports 39/2004). It should be noted that the attribution of N2000 correspondence was made mainly on the basis of the acquired knowledge concerning the “belonging” of the different types of habitats present in the Valle d’Aosta region to specific phytosociological alliances (and therefore to precise N2000 habitats) and not on actual vegetation surveys carried out in the field, this methodology does not apply to the creation of habitat maps on large areas, but only for vegetation maps on very small extensions. It should also be remembered that attributing a certain portion of the territory to a specific habitat never excludes the presence of other habitats either because it is possible to overlap them (for example in a forest it is possible to have a shrub and a herbaceous layer not distinguishable from aerial photos), and because, often, if not always, the different habitats appear in mosaic.
Die Hochwasserrisikogebiete der Hochwasserszenarien HQ10, HQ20 (nur Elbe-Hauptschlauch), HQ100 und HQextrem (Berechnung des HQ200 ohne Wirksamkeit von Hochwasserschutzeinrichtungen) wurden im Land Brandenburg unterschiedlich ermittelt. Zum Einsatz kamen in der Regel hydronumerische Modelle (gekoppelte 1D/2D Modelle, 2D Modelle) mit stationärem Ansatz. Ausnahmen bilden die Hochwasserrisikogebiete an den Bundeswasserstraßen Elbe/Prignitz und Havel. Diese wurden mittels einer GIS-technischen Ausspiegelung auf der Grundlage von Pegelzeitreihen, Wasserstandslängsschnitten, der Stationierungen der Bundeswasserstraßen und dem DGM mit Deichen ermittelt.Herkunft:Gewässernetz Brandenburg (Datenbestand LfU) Vermessung von Gewässern, Hochwasserschutzanlagen und anderen wasserwirtschaftlichen Anlagen (Datenbestand LfU) Hydrologische Daten der Fließgewässer (Datenbestand LfU)Datenquellen:- DGM1 - Orthofotos (DOP40) - Gewässernetz Brandenburg (Datenbestand LfU) - Vermessung von Gewässern, Hochwasserschutzanlagen und anderen wasserwirtschaftlichen Anlagen (Datenbestand LfU) - Hydrologische Daten der Fließgewässer (Datenbestand LfU)Herstellungsprozess:Nach Ermittlung der Hochwasserrisikogebiete wurden die Anschlaglinien und -polygone aller Hochwasserrisikogebiete mit dem PEAK-Algorithmus (in ESRI-ArcGIS 9.3.1) und einer Toleranz von 5 m geglättet. Aus Gründen der Datenverarbeitung mussten im Anschluss mit Hilfe des Douglas-Algorithmus (in ESRI-ArcGIS 10.1) die Stützpunkte reduziert werden. Die maximale Toleranz bei der Nutzung des Douglas-Algorithmus beträgt 0,1 m. Die Geometrie und Topologie des Datensatzes bleiben innerhalb dieser Toleranz erhalten. Es werden alle Stützpunkte, deren Entfernung eine Abweichung unterhalb der Generalisierungs-Toleranz verursacht, gelöscht. Die Position der verbleibenden Stützpunkte wird nicht verändert. Für die leichtere Handhabung wurden die gemeldeten Daten nach Hochwasserszenarien getrennt und mit Textattributen versehen. Weiterhin wurden die größten Polygone an Engstellen geteilt, um die Nutzung im Desktop GIS zu verbessern.Die Daten Stammen vom Geobasis Brandenburg und wurden heruntergeladen, umprojiziert und anschließend veröffentlicht.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex
The downloadable ZIP file contains model documentation and contact information for the model creator. For more information, or a copy of the project report which provides greater model detail, please contact Ryan Urie - traigo12@gmail.com.This model was created from February through April 2010 as a central component of the developer's master's project in Bioregional Planning and Community Design at the University of Idaho to provide a tool for identifying appropriate locations for various land uses based on a variety of user-defined social, economic, ecological, and other criteria. It was developed using the Land-Use Conflict Identification Strategy developed by Carr and Zwick (2007). The purpose of this model is to allow users to identify suitable locations within a user-defined extent for any land use based on any number of social, economic, ecological, or other criteria the user chooses. The model as it is currently composed was designed to identify highly suitable locations for new residential, commercial, and industrial development in Kootenai County, Idaho using criteria, evaluations, and weightings chosen by the model's developer. After criteria were chosen, one or more data layers were gathered for each criterion from public sources. These layers were processed to result in a 60m-resolution raster showing the suitability of each criterion across the county. These criteria were ultimately combined with a weighting sum to result in an overall development suitability raster. The model is intended to serve only as an example of how a GIS-based land-use suitability analysis can be conceptualized and implemented using ArcGIS ModelBuilder, and under no circumstances should the model's outputs be applied to real-world decisions or activities. The model was designed to be extremely flexible so that later users may determine their own land-use suitability, suitability criteria, evaluation rationale, and criteria weights. As this was the first project of its kind completed by the model developer, no guarantees are made as to the quality of the model or the absence of errorsThis model has a hierarchical structure in which some forty individual land-use suitability criteria are combined by weighted summation into several land-use goals which are again combined by weighted summation to yield a final land-use suitability layer. As such, any inconsistencies or errors anywhere in the model tend to reveal themselves in the final output and the model is in a sense self-testing. For example, each individual criterion is presented as a raster with values from 1-9 in a defined spatial extent. Inconsistencies at any point in the model will reveal themselves in the final output in the form of an extent different from that desired, missing values, or values outside the 1-9 range.This model was created using the ArcGIS ModelBuilder function of ArcGIS 9.3. It was based heavily on the recommendations found in the text "Smart land-use analysis: the LUCIS model." The goal of the model is to determine the suitability of a chosen land-use at each point across a chosen area using the raster data format. In this case, the suitability for Development was evaluated across the area of Kootenai County, Idaho, though this is primarily for illustrative purposes. The basic process captured by the model is as follows: 1. Choose a land use suitability goal. 2. Select the goals and criteria that define this goal and get spatial data for each. 3. Use the gathered data to evaluate the quality of each criterion across the landscape, resulting in a raster with values from 1-9. 4. Apply weights to each criterion to indicate its relative contribution to the suitability goal. 5. Combine the weighted criteria to calculate and display the suitability of this land use at each point across the landscape. An individual model was first built for each of some forty individual criteria. Once these functioned successfully, individual criteria were combined with a weighted summation to yield one of three land-use goals (in this case, Residential, Commercial, or Industrial). A final model was then constructed to combined these three goals into a final suitability output. In addition, two conditional elements were placed on this final output (one to give already-developed areas a very high suitability score for development [a "9"] and a second to give permanently conserved areas and other undevelopable lands a very low suitability score for development [a "1"]). Because this model was meant to serve primarily as an illustration of how to do land-use suitability analysis, the criteria, evaluation rationales, and weightings were chosen by the modeler for expediency; however, a land-use analysis meant to guide real-world actions and decisions would need to rely far more heavily on a variety of scientific and stakeholder input.
The Digital Surficial Geologic Map of the Jack Woods Butte quadrangle, Washington is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Bureau of Reclamation. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (jwbu_metadata.txt; available at http://nrdata.nps.gov/laro/nrdata/geology/gis/jwbu_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (jwbu_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of Lake Roosevelt National Recreation Area.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
The Digital Geologic Map of Cape Cod National Seashore and Vicinity, Massachusetts is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (caco_metadata.txt; available at http://nrdata.nps.gov/caco/nrdata/geology/gis/caco_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (caco_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 19N. That data is within the area of interest of Cape Cod National Seashore.
The Digital Surficial Geologic Map of the Wilmont Creek 15' quadrangle, Washington is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Bureau of Reclamation. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (wlck_metadata.txt; available at http://nrdata.nps.gov/laro/nrdata/geology/gis/wlck_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (wlck_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of Lake Roosevelt National Recreation Area.
The Digital Geomorphic Map of Assateague Island National Seashore, Maryland and Virginia is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (asis_metadata.txt; available at http://nrdata.nps.gov/asis/nrdata/geology/gis/asis_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (asis_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 18N. That data is within the area of interest of Assateague Island National Seashore.
This is release 1.0 of the Selective Drainage Toolbox. These tools are designed to be accessed using ArcGIS Desktop software (versions 9.3.1 to 10.4.1). The toolbox is composed of a collection of custom tools that implement geographic information system (GIS) techniques that can be used to identify and enforce drainage hydro features in digital elevation models- with a specific applicability to high- resolution elevation models derived from light detection and ranging (lidar) data.
Ground response--GIS data, June 2010. Downloadable GIS data includes: One ESRI ArcGIS 9.3 geodatabase, consisting of a set of 4 feature classes; Metadata for each feature class, in HTML format (for ease of reading outside of GIS software); One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap; One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in the free ArcGIS Explorer (as well as ArcMap); README file