35 datasets found
  1. National Weather Service 72 Hour Temperature Forecast

    • resilience.climate.gov
    • hub.arcgis.com
    • +4more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service 72 Hour Temperature Forecast [Dataset]. https://resilience.climate.gov/maps/1c8e963bc94c4026bc67488e954d1cb7
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the Apparent and Expected Air Temperature forecast over the next 72 hours across the Contiguous United States, Alaska, Guam, Hawaii, and Puerto Rico in 3 hour increments. The original raster data has been processed into 1-degree contours.Two layers are included: apparent and expected temperature, both include a Time Series set to a 3-hour time interval. The apparent temperature is the perceived (or feels like) temperature derived from either a combination of temperature and wind (wind chill) or temperature and humidity (heat index) for the indicated hour. When the temperature at a particular grid point falls to 50 °F or less, wind chill will be used for that point for the apparent temperature. When the temperature at a grid point rises above 80 °F, the heat index will be used for apparent temperature.
    Between 51 and 80 °F, the apparent temperature will be the ambient air temperature.The expected temperature is the forecasted ambient air temperature in °F.See sister data product for Min and Max Daily TemperaturesRevisionsApr 21, 2022: Added Forecast Period Number 'Interval' field for an alternate query method to the Timeline of data. Disabled Time Series by default to improve initial Map Viewer exprience and added a Filter for 'interval = 1' to display initial forecast time data (current time period).Apr 22, 2022: Set 'Apparent Temperature' layer visibility to True by default, so content is visible when initially viewed.Sep 1, 2022: Updated renderer Arcade logic on layers to correctly symbolize on values greater than 120 and less than -60 degrees.DetailService Data update interval is: HourlyWhere is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Apparent Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.apt.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.apt.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.apt.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.apt.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.apt.binExpected Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.temp.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.temp.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.temp.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.temp.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.temp.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This feature service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation or add a Filter using the 'Forecast Period Number'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page.

  2. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    Updated Apr 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  3. a

    Full Range Heat Anomalies - USA 2020

    • hrtc-oc-cerf.hub.arcgis.com
    Updated Mar 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Full Range Heat Anomalies - USA 2020 [Dataset]. https://hrtc-oc-cerf.hub.arcgis.com/datasets/TPL::full-range-heat-anomalies-usa-2020
    Explore at:
    Dataset updated
    Mar 4, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2019 and 2020.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  4. h

    Urban Heat Island Severity for U.S. cities - 2019

    • heat.gov
    • hub.arcgis.com
    • +4more
    Updated Sep 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2019). Urban Heat Island Severity for U.S. cities - 2019 [Dataset]. https://www.heat.gov/datasets/4f6d72903c9741a6a6ee6349f5393572
    Explore at:
    Dataset updated
    Sep 13, 2019
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of Arizona Dr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAADaphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  5. Actual Evapotranspiration (Mature Support)

    • africageoportal.com
    • agriculture.africageoportal.com
    • +3more
    Updated Mar 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Actual Evapotranspiration (Mature Support) [Dataset]. https://www.africageoportal.com/datasets/31f7c3727abf42249a43fe8f25470af4
    Explore at:
    Dataset updated
    Mar 1, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  6. h

    Heat Severity - USA 2021

    • heat.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3
    Explore at:
    Dataset updated
    Jan 6, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    United States,
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  7. Sea Surface Temperature

    • oceangis.esri.de
    Updated Jan 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2023). Sea Surface Temperature [Dataset]. https://oceangis.esri.de/datasets/dd4bfb623a4248888c521d2c87106f44
    Explore at:
    Dataset updated
    Jan 31, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    Sea surface temperature is the measure of the water’s temperature at the ocean’s surface. The temperature of the ocean varies primarily with latitude. The warmest waters generally occur along the equator and the coolest near the poles. Most deviations from this pattern occur due to the ocean’s currents. For example you can see warm water moving north along the eastern coast of the United States due to the Gulf Stream current and water along the western coast of the U.S. is cooler than you might predict due to the cold water upwelling. What other deviations from the pattern do you see? Sea surface temperature is measured by satellite instruments that record the energy emanating from the ocean surface globally. The energy is emitted at different wavelengths. The data are then validated with temperature readings collected by ships and buoys. Computers then process and smooth the data according to algorithms written by scientists. Understanding sea surface temperature is important because it helps us understand why some places are warmer or cooler and how that impacts the species living there. Changes in an organism's environment can impact its access to food, alter migration patterns, or change access to mates. Additionally, as Earth warms much of the excess heat is being absorbed by the ocean causing an increase in sea surface temperatures. The National Oceanic and Atmospheric Administration (NOAA) has collected data showing the ocean has warmed approximately 0.13℃ (0.234℉) every ten years over the last century. This can change the range of marine organisms and bleach corals. It also impacts the amount of water vapor available to weather systems increasing the chances for more severe and stronger events. Warmer waters can even change the trajectory of a storm, flooding unprepared places and causing droughts in other locations.This sea surface temperature map layer is composed of radiance measurements collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. The temperature of the top millimeter of water was measured in Celsius and is accurate within half a degree. This map layer shows the average sea surface temperature for the month of December 2020 at one-degree resolution. Compare this layer to one of the other three sea surface temperature layers to see how sea surface temperature changed seasonally in 2020. What do you see? Next, add the ocean currents layer, what do you see?

  8. v

    Cloud Top Temperature Imagery Services from NASA GIBS

    • anrgeodata.vermont.gov
    • amerigeo.org
    • +7more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Cloud Top Temperature Imagery Services from NASA GIBS [Dataset]. https://anrgeodata.vermont.gov/maps/84b5c5c860de4c608096a3c74d33b4c8
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  9. USA Soils Map Units

    • historic-cemeteries.lthp.org
    • mapdirect-fdep.opendata.arcgis.com
    • +9more
    Updated Apr 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://historic-cemeteries.lthp.org/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  10. a

    Heat Severity - USA 2022

    • hub.arcgis.com
    • hrtc-oc-cerf.hub.arcgis.com
    • +3more
    Updated Mar 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  11. a

    Sea Surface Temperature Anomalies Imagery Browse Services

    • sdgs.amerigeoss.org
    • climate.amerigeoss.org
    • +2more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Sea Surface Temperature Anomalies Imagery Browse Services [Dataset]. https://sdgs.amerigeoss.org/items/518285b9a1494d95bb9f47abe83d968d
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov.

  12. a

    Full Range Heat Anomalies - USA 2023

    • hub.arcgis.com
    • keep-cool-global-community.hub.arcgis.com
    • +1more
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Full Range Heat Anomalies - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/e89a556263e04cb9b0b4638253ca8d10
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  13. a

    Sea Surface Temperature Imagery Services

    • amerigeo.org
    • climate.amerigeoss.org
    • +3more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Sea Surface Temperature Imagery Services [Dataset]. https://www.amerigeo.org/maps/amerigeoss::sea-surface-temperature-imagery-services-/about?appid=f4c61518cb314fe5a5dff37cde820592&edit=true
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov.

  14. Areas

    • datalibrary-lnr.hub.arcgis.com
    • pacificgeoportal.com
    • +5more
    Updated Apr 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Areas [Dataset]. https://datalibrary-lnr.hub.arcgis.com/datasets/esri2::areas
    Explore at:
    Dataset updated
    Apr 15, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Coral reefs are one of the most diverse and ecologically important areas of the world. However, many reefs, are threatened by ocean temperatures that are increasingly becoming warmer than the coral animals' natural tolerance. According to NOAA, when water is too warm, corals will expel the algae (zooxanthellae) living in their tissues causing the coral to turn completely white. This is called coral bleaching. When a coral bleaches, it is not dead. Corals can survive a bleaching event, but they are under more stress and are subject to mortality.The NOAA Coral Reef Watch program uses satellite data to provide current reef environmental conditions to quickly identify areas at risk for coral bleaching. The station data displayed in this map are derived from satellite based measurements of ocean temperature. These "virtual stations" are not actual buoys or in situ stations transmitting data, rather a spatial analyses for reef locations around the world are derived from 5 km resolution raster data. There are 213 points for the virtual stations around the world along with polygons describing the major tropical coral reef systems. Each station has several variables: Alert Level: an index of the likelihood of coral bleaching, scaled from 0 (no heat stress) to 4 (coral mortality likely) based on the attributes belowSea surface temperature: average temperature of the ocean surface derived from satellite measurementsTemperature anomaly: a comparison of the current surface temperature to the 1981-2010 historical averageHotspots: number of degrees above the coral's threshold toleranceDegree Heating Weeks: accumulated thermal stress experienced by coralsMaintenanceService data is maintained by the Overwrite Feature Service script running as a Scheduled Notebook TaskSee Sample OverwriteFS NotebookRevisionsJan 25, 2024: Updated Legend text for Area Layer, adding clarityJul 28, 2023: Applied updated Symbology and Popups from Coral Reef Bleaching Stations Web Map

  15. h

    Expected

    • heat.gov
    • hub.arcgis.com
    • +3more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Expected [Dataset]. https://www.heat.gov/maps/esri2::expected
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This map displays the Apparent and Expected Air Temperature forecast over the next 72 hours across the Contiguous United States, Alaska, Guam, Hawaii, and Puerto Rico in 3 hour increments. The original raster data has been processed into 1-degree contours.Two layers are included: apparent and expected temperature, both include a Time Series set to a 3-hour time interval. The apparent temperature is the perceived (or feels like) temperature derived from either a combination of temperature and wind (wind chill) or temperature and humidity (heat index) for the indicated hour. When the temperature at a particular grid point falls to 50 °F or less, wind chill will be used for that point for the apparent temperature. When the temperature at a grid point rises above 80 °F, the heat index will be used for apparent temperature.
    Between 51 and 80 °F, the apparent temperature will be the ambient air temperature.The expected temperature is the forecasted ambient air temperature in °F.See sister data product for Min and Max Daily TemperaturesRevisionsApr 21, 2022: Added Forecast Period Number 'Interval' field for an alternate query method to the Timeline of data. Disabled Time Series by default to improve initial Map Viewer exprience and added a Filter for 'interval = 1' to display initial forecast time data (current time period).Apr 22, 2022: Set 'Apparent Temperature' layer visibility to True by default, so content is visible when initially viewed.Sep 1, 2022: Updated renderer Arcade logic on layers to correctly symbolize on values greater than 120 and less than -60 degrees.DetailService Data update interval is: HourlyWhere is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Apparent Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.apt.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.apt.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.apt.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.apt.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.apt.binExpected Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.temp.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.temp.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.temp.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.temp.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.temp.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This feature service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation or add a Filter using the 'Forecast Period Number'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page.

  16. Satellite (MODIS) Thermal Hotspots and Fire Activity

    • wifire-data.sdsc.edu
    • emergency-lacounty.hub.arcgis.com
    Updated Mar 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Satellite (MODIS) Thermal Hotspots and Fire Activity [Dataset]. https://wifire-data.sdsc.edu/dataset/satellite-modis-thermal-hotspots-and-fire-activity
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Mar 4, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.


    Consumption Best Practices:

    • As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to 'https://en.wikipedia.org/wiki/Rate_limiting' rel='nofollow ugc'>Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.
    • When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.

    Scale/Resolution: 1km

    Update Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed Methodology

    Area Covered: World

    What can I do with this layer?
    The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.

    Additional Information
    MODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.

    It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.

    Attribute Information
    • Latitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?
    • Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.
    • Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?
    • Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.
    • Acquisition Date: Derived Date/Time field combining Date and Time attributes.
    • Satellite: Whether the detection was picked up by the Terra or Aqua satellite.
    • Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.
    • Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.
    • Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.
    • FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).
    • DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.
    • Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.
    Revisions
    • June 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.
    This map is provided for informational purposes and is not monitored 24/7 for accuracy and

  17. a

    India: Potential Evapotranspiration

    • up-state-observatory-esriindia1.hub.arcgis.com
    • hub.arcgis.com
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Potential Evapotranspiration [Dataset]. https://up-state-observatory-esriindia1.hub.arcgis.com/datasets/india-potential-evapotranspiration
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    The combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  18. Z

    Automatic global climate classification, preserving Köppen thermal classes...

    • data.niaid.nih.gov
    Updated Dec 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brice B. Hanberry (2022). Automatic global climate classification, preserving Köppen thermal classes with added aridity information and a hypertropical class [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7387288
    Explore at:
    Dataset updated
    Dec 2, 2022
    Dataset authored and provided by
    Brice B. Hanberry
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A streamlined system using growing degree days for climate classification that delivers both temperature and aridity information in all classes and an added hypertropical class. Primary thermal classes remain consistent with the primary Köppen climate classes and their established connection to biomes.

    The eight class to tif tool ends with a .tif file of climate classes.

    The steps may need to be modified if using different inputs than Envirem and WorldClim 1.4. Envirem is missing datum information, but ArcGIS makes the same calculations without the project raster step. Note that WorldClim 1.4 applies a scaling factor of 10 for temperature data, which is propagated in Envirem.

    Import the symbology layer file climate_8_class. If ArcGIS is being cranky about displaying the (blue) hypertropical class, try reseting with the 'Add All Values' button, followed by hitting 'Default Colors'.

  19. n

    Satellite (VIIRS) Thermal Hotspots and Fire Activity - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Satellite (VIIRS) Thermal Hotspots and Fire Activity - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/satellite-viirs-thermal-hotspots-and-fire-activity
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    This layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Consumption Best Practices: As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP and NOAA-20 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireHours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.Additional information can be found on the NASA FIRMS site FAQ.Note about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.RevisionsSeptember 15, 2022: Updated to include 'Hours_Old' field. Time series has been disabled by default, but still available.July 5, 2022: Terms of Use updated to Esri Master License Agreement, no longer stating that a subscription is required!This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  20. a

    Land Surface Temperatures Imagery Services from NASA GIBS

    • sdgs.amerigeoss.org
    • amerigeo.org
    • +2more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Land Surface Temperatures Imagery Services from NASA GIBS [Dataset]. https://sdgs.amerigeoss.org/maps/b8738f65b7e8430e8a5c53569a0d65b6
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). National Weather Service 72 Hour Temperature Forecast [Dataset]. https://resilience.climate.gov/maps/1c8e963bc94c4026bc67488e954d1cb7
Organization logo

National Weather Service 72 Hour Temperature Forecast

Explore at:
Dataset updated
Aug 16, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This map displays the Apparent and Expected Air Temperature forecast over the next 72 hours across the Contiguous United States, Alaska, Guam, Hawaii, and Puerto Rico in 3 hour increments. The original raster data has been processed into 1-degree contours.Two layers are included: apparent and expected temperature, both include a Time Series set to a 3-hour time interval. The apparent temperature is the perceived (or feels like) temperature derived from either a combination of temperature and wind (wind chill) or temperature and humidity (heat index) for the indicated hour. When the temperature at a particular grid point falls to 50 °F or less, wind chill will be used for that point for the apparent temperature. When the temperature at a grid point rises above 80 °F, the heat index will be used for apparent temperature.
Between 51 and 80 °F, the apparent temperature will be the ambient air temperature.The expected temperature is the forecasted ambient air temperature in °F.See sister data product for Min and Max Daily TemperaturesRevisionsApr 21, 2022: Added Forecast Period Number 'Interval' field for an alternate query method to the Timeline of data. Disabled Time Series by default to improve initial Map Viewer exprience and added a Filter for 'interval = 1' to display initial forecast time data (current time period).Apr 22, 2022: Set 'Apparent Temperature' layer visibility to True by default, so content is visible when initially viewed.Sep 1, 2022: Updated renderer Arcade logic on layers to correctly symbolize on values greater than 120 and less than -60 degrees.DetailService Data update interval is: HourlyWhere is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Apparent Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.apt.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.apt.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.apt.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.apt.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.apt.binExpected Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.temp.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.temp.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.temp.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.temp.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.temp.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This feature service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation or add a Filter using the 'Forecast Period Number'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page.

Search
Clear search
Close search
Google apps
Main menu