100+ datasets found
  1. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  2. m

    Standard color legend for Romanian soil type maps in ESRI ArcMap-10...

    • data.mendeley.com
    Updated May 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virgil Vlad (2020). Standard color legend for Romanian soil type maps in ESRI ArcMap-10 electronic format [Dataset]. http://doi.org/10.17632/5x2gm24zkb.2
    Explore at:
    Dataset updated
    May 6, 2020
    Authors
    Virgil Vlad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Romania
    Description

    In order to use the standard color legend for Romanian soil type maps in the ESRI ArcMap-10 electronic format, a dataset consisting a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), four different .lyr files, and three different .style files have been prepared (ESRI, 2016). The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil types from the standard legend. This legend contains 67 standard items: 63 proper colors (different color hues, each of them having, generally, 2 - 4 degrees of lightness and/or chroma, four shades of grey, and white color), and four hatching patterns on white background (ESRI, 2016). The “color difference DE*ab” between any two legend colors, calculated with the color perceptually-uniform model CIELAB , is greater than 10 units, thus ensuring acceptably-distinguishable colors in the legend. The 67 standard items are assigned to 60 main soils existing in Romania, four main nonsoils, and three special cases of unsurveyed land. The soils are specified in terms of the current Romanian system of soil taxonomy, SRTS-2012+, and of the international soil classification system WRB-2014. The four different .lyr files presented here are: legend_soilcode_srts_wrb.lyr, legend_soilcode_wrb.lyr, legend_colourcode_srts_wrb.lyr, and legend_colourcode_wrb.lyr. The first two of them are built using as value field the ‘Soil_codes’ field, and as labels (explanation texts) the ‘Soil_name’ field (storing the soil types according to SRTS/WRB classification), respectively, the ‘WRB’ field (the soil type according to WRB classification), while the last two .lyr files are built using as value field the ‘colour_code’ field (storing the color codes) and as labels the soil name in SRTS and WRB, respectively, in WRB classification. In order to exemplify how the legend is displayed, two .jpg files are also presented: legend_soil_srts_wrb.jpg and legend_colour_wrb.jpg. The first displays the legend (symbols and labels) according to the SRTS classification order, the second according to the WRB classification. The three different .style files presented here are: soil_symbols.style, wrb_codes.style, and colour_codes.style. They use as name the soil acronym in SRTS classification, soil acronym in WRB classification, and, respectively, the color code.

  3. r

    Add GTFS to a Network Dataset

    • opendata.rcmrd.org
    Updated Jun 27, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Add GTFS to a Network Dataset [Dataset]. https://opendata.rcmrd.org/content/0fa52a75d9ba4abcad6b88bb6285fae1
    Explore at:
    Dataset updated
    Jun 27, 2013
    Dataset authored and provided by
    ArcGIS for Transportation Analytics
    Description

    Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum

  4. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  5. d

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • search.dataone.org
    • arcticdata.io
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://search.dataone.org/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  6. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  7. Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes...

    • catalog.data.gov
    • datasets.ai
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes [Dataset]. https://catalog.data.gov/dataset/charles-m-russell-national-wildlife-refuge-fire-history-gis-feature-classes
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.

  8. a

    NAIP 2022 NDVI 60cm California

    • data-cdfw.opendata.arcgis.com
    • data.cnra.ca.gov
    • +4more
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). NAIP 2022 NDVI 60cm California [Dataset]. https://data-cdfw.opendata.arcgis.com/datasets/CDFW::naip-2022-ndvi-60cm-california
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlife
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    A Normalized Difference Vegetation Index (NDVI) was applied to the source NAIP 2022 60cm imagery. NDVI=(NearIR-Red)/(NearIR+Red). The color ramp (produced by ESRI) goes from brown (less healthy vegetation) to red to green (healthier vegetation or more "greenness").This service is offered by the California Department of Fish and Wildlife (CDFW). For more information about CDFW map services, please visit: https://wildlife.ca.gov/Data/GIS/Map-Services

  9. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  10. a

    OGC Web Map Service (WMS):Petroleum System and Assessment of Oil and Gas,...

    • catalogue.arctic-sdi.org
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OGC Web Map Service (WMS):Petroleum System and Assessment of Oil and Gas, Travis Peak-Hosston Formations, East Texas Basin and Louisiana-Mississippi Salt Basins Provinces, Texas, Louisiana, Mississippi, Alabama, and Florida [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/resources/datasets/c8997b22-359e-4046-a988-f67ee73f034a
    Explore at:
    Dataset updated
    May 23, 2022
    Area covered
    Travis Peak
    Description

    (See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.

  11. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Arkansas, Hot Springs
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  12. d

    California State Waters Map Series--Offshore of Ventura Web Services

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Ventura Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-ventura-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Ventura, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.

  13. i07 Water Shortage Vulnerability Sections

    • data.cnra.ca.gov
    • data.ca.gov
    • +4more
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i07 Water Shortage Vulnerability Sections [Dataset]. https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections
    Explore at:
    arcgis geoservices rest api, kml, geojson, csv, zip, htmlAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents a water shortage vulnerability analysis performed by DWR using modified PLSS sections pulled from the Well Completion Report PLSS Section Summaries. The attribute table includes water shortage vulnerability indicators and scores from an analysis done by CA Department of Water Resources, joined to modified PLSS sections. Several relevant summary statistics from the Well Completion Reports are included in this table as well. This data is from the 2024 analysis.

    Water Code Division 6 Part 2.55 Section 8 Chapter 10 (Assembly Bill 1668) effectively requires California Department of Water Resources (DWR), in consultation with other agencies and an advisory group, to identify small water suppliers and “rural communities” that are at risk of drought and water shortage. Following legislation passed in 2021 and signed by Governor Gavin Newsom, the Water Code Division 6, Section 10609.50 through 10609.80 (Senate Bill 552 of 2021) effectively requires the California Department of Water Resources to update the scoring and tool periodically in partnership with the State Water Board and other state agencies. This document describes the indicators, datasets, and methods used to construct this deliverable.  This is a statewide effort to systematically and holistically consider water shortage vulnerability statewide of rural communities, focusing on domestic wells and state small water systems serving between 4 and 14 connections. The indicators and scoring methodology will be revised as better data become available and stake-holders evaluate the performance of the indicators, datasets used, and aggregation and ranking method used to aggregate and rank vulnerability scores. Additionally, the scoring system should be adaptive, meaning that our understanding of what contributes to risk and vulnerability of drought and water shortage may evolve. This understanding may especially be informed by experiences gained while navigating responses to future droughts.”

    A spatial analysis was performed on the 2020 Census Block Groups, modified PLSS sections, and small water system service areas using a variety of input datasets related to drought vulnerability and water shortage risk and vulnerability. These indicator values were subsequently rescaled and summed for a final vulnerability score for the sections and small water system service areas. The 2020 Census Block Groups were joined with ACS data to represent the social vulnerability of communities, which is relevant to drought risk tolerance and resources. These three feature datasets contain the units of analysis (modified PLSS sections, block groups, small water systems service areas) with the model indicators for vulnerability in the attribute table. Model indicators are calculated for each unit of analysis according to the Vulnerability Scoring documents provided by Julia Ekstrom (Division of Regional Assistance).

    All three feature classes are DWR analysis zones that are based off existing GIS datasets. The spatial data for the sections feature class is extracted from the Well Completion Reports PLSS sections to be aligned with the work and analysis that SGMA is doing. These are not true PLSS sections, but a version of the projected section lines in areas where there are gaps in PLSS. The spatial data for the Census block group feature class is downloaded from the Census. ACS (American Communities Survey) data is joined by block group, and statistics calculated by DWR have been added to the attribute table. The spatial data for the small water systems feature class was extracted from the State Water Resources Control Board (SWRCB) SABL dataset, using a definition query to filter for active water systems with 3000 connections or less. None of these datasets are intended to be the authoritative datasets for representing PLSS sections, Census block groups, or water service areas. The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR.

    These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the Drought and Water Shortage Vulnerability Scoring: California's Domestic Wells and State Smalls Systems documentation for more information on indicators and scoring. These estimated indicator scores may sometimes be calculated in several different ways, or may have been calculated from data that has since be updated. Counts of domestic wells may be calculated in different ways. In order to align with DWR SGMO's (State Groundwater Management Office) California Groundwater Live dashboards, domestic wells were calculated using the same query. This includes all domestic wells in the Well Completion Reports dataset that are completed after 12/31/1976, and have a 'RecordType' of 'WellCompletion/New/Production or Monitoring/NA'.

    Please refer to the Well Completion Reports metadata for more information. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data.

    DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  14. d

    California Land Ownership

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). California Land Ownership [Dataset]. https://catalog.data.gov/dataset/california-land-ownership-b6394
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    CAL FIRE
    Area covered
    California
    Description

    This dataset was updated April, 2024.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes: Clipping input datasets to the California boundary Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc) Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California. Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only. Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs) In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset.Data Sources: GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.htmlData Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.

  15. a

    Data from: Google Earth Engine (GEE)

    • hub.arcgis.com
    • data.amerigeoss.org
    • +5more
    Updated Nov 28, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://hub.arcgis.com/items/bb1b131beda24006881d1ab019205277
    Explore at:
    Dataset updated
    Nov 28, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  16. f

    Modifiable set of ESRI ArcMap-10 shape-lyr-style files implementing the...

    • figshare.com
    zip
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virgil Vlad; Sorina Dumitru; Mihai Toti; Catalin Simota; Mihail Dumitru (2023). Modifiable set of ESRI ArcMap-10 shape-lyr-style files implementing the Romanian color standard for soil type map legends [Dataset]. http://doi.org/10.6084/m9.figshare.12782138.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    figshare
    Authors
    Virgil Vlad; Sorina Dumitru; Mihai Toti; Catalin Simota; Mihail Dumitru
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In order to use the Romanian color standard for soil type map legends, a dataset of ESRI ArcMap-10 files, consisting of a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), four different .lyr files, and three different .style files (https://desktop.arcgis.com/en/arcmap/10.3/map/ : saving-layers-and-layer-packages, about-creating-new-symbols, what-are-symbols-and-styles-), have been prepared. The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil types from the standard legend.

    This legend contains 67 standard items: 63 proper colors (different color hues, each of them having, generally, 2 - 4 degrees of lightness and/or chroma, four shades of grey, and white color), and four hatching patterns on white background. The “color difference DE*ab” between any two legend colors, calculated with the color perceptually-uniform model CIELAB, is greater than 10 units, thus ensuring acceptably-distinguishable colors in the legend. The 67 standard items are assigned to 60 main soils existing in Romania, four main nonsoils, and three special cases of unsurveyed land. The soils are specified in terms of the current Romanian system of soil taxonomy, SRTS-2012+, and of the international system WRB-2014.

    The four different .lyr files presented here are: legend_soilcode_srts_wrb.lyr, legend_soilcode_wrb.lyr, legend_colorcode_srts_wrb.lyr, and legend_colorcode_wrb.lyr. The first two of them are built using as value field the “Soil_codes” field, and as labels (explanation texts) the “Soil_name” field (storing the soil types according to SRTS/WRB classification), respectively, the “WRB” field (the soil type according to WRB classification), while the last two .lyr files are built using as value field the “color_code” field (storing the color codes) and as labels the soil name in SRTS and WRB, respectively, in WRB classification.

    In order to exemplify how the legend is displayed, two .jpg files are also presented: legend_soil_srts_wrb.jpg and legend_color_wrb.jpg. The first displays the legend (symbols and labels) according to the SRTS classification order, the second according to the WRB classification.

    The three different .style files presented here are: soil_symbols.style, wrb_codes.style, and color_codes.style. They use as name the soil acronym in SRTS classification, soil acronym in WRB classification, and, respectively, the color code.

    The presented file set may be used to directly implement the Romanian color standard in digital soil type map legends, or may be adjusted/modified to other specific requirements.

  17. a

    08.1 Working with Geodatabase Domains and Subtypes in ArcGIS

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 08.1 Working with Geodatabase Domains and Subtypes in ArcGIS [Dataset]. https://hub.arcgis.com/documents/e436ce085783468e8ea2025ceb12c150
    Explore at:
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Maintaining accurate data is a concern of all GIS users. The geodatabase offers you the ability to create geographic features that represent the real world. As the real world changes, you must update these features and their attributes. When creating or updating data, you can add behavior to your features and other objects to minimize the potential for errors.After completing this course, you will be able to:Define the two types of attribute domains and discuss how they differ.Create attribute domains and use them when editing data.Create subtypes and use them when editing data.Explain the difference between an attribute domain and a subtype.

  18. d

    Land-Use Conflict Identification Strategy (LUCIS) Models

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Nov 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Univeristy of Idaho (2020). Land-Use Conflict Identification Strategy (LUCIS) Models [Dataset]. https://catalog.data.gov/dataset/land-use-conflict-identification-strategy-lucis-models
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    Univeristy of Idaho
    Description

    The downloadable ZIP file contains model documentation and contact information for the model creator. For more information, or a copy of the project report which provides greater model detail, please contact Ryan Urie - traigo12@gmail.com.This model was created from February through April 2010 as a central component of the developer's master's project in Bioregional Planning and Community Design at the University of Idaho to provide a tool for identifying appropriate locations for various land uses based on a variety of user-defined social, economic, ecological, and other criteria. It was developed using the Land-Use Conflict Identification Strategy developed by Carr and Zwick (2007). The purpose of this model is to allow users to identify suitable locations within a user-defined extent for any land use based on any number of social, economic, ecological, or other criteria the user chooses. The model as it is currently composed was designed to identify highly suitable locations for new residential, commercial, and industrial development in Kootenai County, Idaho using criteria, evaluations, and weightings chosen by the model's developer. After criteria were chosen, one or more data layers were gathered for each criterion from public sources. These layers were processed to result in a 60m-resolution raster showing the suitability of each criterion across the county. These criteria were ultimately combined with a weighting sum to result in an overall development suitability raster. The model is intended to serve only as an example of how a GIS-based land-use suitability analysis can be conceptualized and implemented using ArcGIS ModelBuilder, and under no circumstances should the model's outputs be applied to real-world decisions or activities. The model was designed to be extremely flexible so that later users may determine their own land-use suitability, suitability criteria, evaluation rationale, and criteria weights. As this was the first project of its kind completed by the model developer, no guarantees are made as to the quality of the model or the absence of errorsThis model has a hierarchical structure in which some forty individual land-use suitability criteria are combined by weighted summation into several land-use goals which are again combined by weighted summation to yield a final land-use suitability layer. As such, any inconsistencies or errors anywhere in the model tend to reveal themselves in the final output and the model is in a sense self-testing. For example, each individual criterion is presented as a raster with values from 1-9 in a defined spatial extent. Inconsistencies at any point in the model will reveal themselves in the final output in the form of an extent different from that desired, missing values, or values outside the 1-9 range.This model was created using the ArcGIS ModelBuilder function of ArcGIS 9.3. It was based heavily on the recommendations found in the text "Smart land-use analysis: the LUCIS model." The goal of the model is to determine the suitability of a chosen land-use at each point across a chosen area using the raster data format. In this case, the suitability for Development was evaluated across the area of Kootenai County, Idaho, though this is primarily for illustrative purposes. The basic process captured by the model is as follows: 1. Choose a land use suitability goal. 2. Select the goals and criteria that define this goal and get spatial data for each. 3. Use the gathered data to evaluate the quality of each criterion across the landscape, resulting in a raster with values from 1-9. 4. Apply weights to each criterion to indicate its relative contribution to the suitability goal. 5. Combine the weighted criteria to calculate and display the suitability of this land use at each point across the landscape. An individual model was first built for each of some forty individual criteria. Once these functioned successfully, individual criteria were combined with a weighted summation to yield one of three land-use goals (in this case, Residential, Commercial, or Industrial). A final model was then constructed to combined these three goals into a final suitability output. In addition, two conditional elements were placed on this final output (one to give already-developed areas a very high suitability score for development [a "9"] and a second to give permanently conserved areas and other undevelopable lands a very low suitability score for development [a "1"]). Because this model was meant to serve primarily as an illustration of how to do land-use suitability analysis, the criteria, evaluation rationales, and weightings were chosen by the modeler for expediency; however, a land-use analysis meant to guide real-world actions and decisions would need to rely far more heavily on a variety of scientific and stakeholder input.

  19. d

    CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010)

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig Rasmussen; Matej Durcik (2021). CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010) [Dataset]. https://search.dataone.org/view/sha256%3Af79c5b6ae39494aa0732981635ad3e39b5f731343ea03de995bc59a1c67ceb6b
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Craig Rasmussen; Matej Durcik
    Time period covered
    Jan 1, 2010 - Dec 31, 2010
    Area covered
    Description

    Yearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Catalina Mountains by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).

  20. d

    Data from: California State Waters Map Series--Santa Barbara Channel Web...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Santa Barbara Channel Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-santa-barbara-channel-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Santa Barbara Channel
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
Organization logo

Data from: Switching to ArcGIS Pro from ArcMap

Related Article
Explore at:
Dataset updated
Aug 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

Search
Clear search
Close search
Google apps
Main menu