Facebook
TwitterCoconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.
To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.
In this lesson you will build skills in these areas:
Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.
Facebook
TwitterYou will need an ArcGIS Online account for this lesson plan. If you do not have one, or have forgotten your details contact your institution's IT administrator. Alternatively, email highered@esriuk.com to get in touch for further assistance.To get started:
Facebook
TwitterCreate a basic Story Map: Disease investigations (Learn ArcGIS PDF Lesson). This lesson will show you how to prepare a story map explaining John Snow’s famous investigation of the 1854 cholera outbreak in London._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterThis course introduces you to the powerful capabilities of ArcGIS Pro and how it can be used in your work.Goals Describe capabilities of ArcGIS Pro. Use basic ArcGIS Pro functionality.
Facebook
TwitterThe Civil Engineering Students Society organized an 'ArcGIS Online Training for Beginners.' Geographical Information System (GIS) technology provides the tools for creating, managing, analyzing, and visualizing data associated with developing and managing infrastructure.
It also allowed civil engineers to manage and share data, turning it into easily understood reports and visualizations that could be analyzed and communicated to others. Additionally, it helped civil engineers in spatial analysis, data management, urban development, town planning, and site analysis.
It is equally important for beginner geospatial students.
Facebook
TwitterPrior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
Facebook
TwitterYou will need an ArcGIS Online account for this lesson plan. If you do not have one, or have forgotten your details contact your institution's IT administrator. Alternatively, email highered@esriuk.com to get in touch for further assistance.To get started:Head to Arcgis.comClick sign inLogin with your details
Facebook
TwitterThis course shows you practical editing tools and workflows to keep your data accurate and current.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
Facebook
TwitterYou will need to use your ArcGIS Online account for this lesson plan. If you are happy opening and with the basics of webmaps in ArcGIS Online you don't need to complete this exercise.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
Facebook
TwitterMapping Our World Using GIS is a 1:1 set of instructional materials for teaching basic concepts found in middle school world geography. Each module consists of multiple files.
The Mapping Our World collection is at: http://esriurl.com/MOW.
All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries
This computer activity will show you how to start the ArcGIS Online program. You will be guided
through the basics of using ArcGIS Online map viewer to explore maps. After you do this activity, you will be prepared to complete other GIS activities.
Facebook
TwitterIn this tutorial, you will be introduced to the basics of the ArcGIS Online Web-based Geographic Information System (GIS) software tool. You will begin by exploring spatial data in the form of map layers that are available on the Web as well as map applications (apps). You will then use the ArcGIS Online Map Viewer to search for content, add features to a map, and save and share your completed map with others.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Environmental Learning Centers dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Facebook
TwitterYou will need an ArcGIS Online account for this lesson plan. If you do not have one, or have forgotten your details contact your institution's IT administrator. Alternatively, email highered@esriuk.com to get in touch for further assistance.To get started:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups include: new/revised datasets (paleo-geothermal features, geochemistry, geophysics, heat flow, slip and dilation, potential structures, geothermal power plants, positive and negative test sites), machine learning model input grids, machine learning models (Artificial Neural Network (ANN), Extreme Learning Machine (ELM), Bayesian Neural Network (BNN), Principal Component Analysis (PCA/PCAk), Non-negative Matrix Factorization (NMF/NMFk) - supervised and unsupervised), original NV Play Fairway data and models, and NV cultural/reference data.
See layer descriptions for additional metadata. Smaller GIS resource packages (by category) can be found in the related datasets section of this submission. A submission linking the full codebase for generating machine learning output models is available through the "Related Datasets" link on this page, and contains results beyond the top picks present in this compilation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Learning GIS using open source software : an applied guide for geo-spatial analysis. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterEnroll in this plan to understand ArcGIS Online capabilities, publish content to an ArcGIS Online organizational site, create web maps and apps, and review common ArcGIS Online administrative tasks.
Goals Access web maps, apps, and other GIS resources that have been shared to an ArcGIS Online organizational site. Publish GIS data as services to an ArcGIS Online organizational site. Create, configure, and share web maps and apps. Manage ArcGIS Online user roles and privileges.
Facebook
TwitterNone. Visit https://dataone.org/datasets/sha256%3Af60d09ceb6984908feab039c6f17e84cb371e849c4f37dff92c1d0662a423d6e for complete metadata about this dataset.
Facebook
TwitterCoconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.
To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.
In this lesson you will build skills in these areas:
Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.