16 datasets found
  1. a

    VT Data - Town Boundaries

    • hub.arcgis.com
    • explore-vcbb.hub.arcgis.com
    • +2more
    Updated Feb 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2022). VT Data - Town Boundaries [Dataset]. https://hub.arcgis.com/datasets/3f464b0e1980450e9026430a635bff0a
    Explore at:
    Dataset updated
    Feb 7, 2022
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    (Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries.

    It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary.

    The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names.

    BNDHASH includes the following feature classes:

    1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built

    The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors.

    NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only.

    • Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
  2. a

    PerCapita CO2 Footprint InDioceses FULL

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). PerCapita CO2 Footprint InDioceses FULL [Dataset]. https://hub.arcgis.com/content/95787df270264e6ea1c99ffa6ff844ff
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  3. b

    BTV City Boundary

    • data.burlingtonvt.gov
    • hub.arcgis.com
    • +2more
    Updated Apr 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BTV City Boundary [Dataset]. https://data.burlingtonvt.gov/datasets/f570c83d68d84e5cac32c08f1530f26f
    Explore at:
    Dataset updated
    Apr 25, 2023
    Dataset authored and provided by
    City of Burlington
    Area covered
    Description

    The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) VILLAGES = Vermont villages 2) TOWNS = Vermont towns 3) COUNTIES = Vermont counties 4) RPCS = Vermont's Regional Planning Commissions 5) LEPC = Local Emergency Planning Committee boundaries 6) VTBND = Vermont's state boundary The master BNDHASH layer is managed as ESRI geodatabase feature dataset by VCGI. The dataset stores villages, towns, counties, and RPC boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/rpc boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the location of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line featue with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.

  4. a

    VT Data - Whitingham Zoning

    • geodata1-59998-vcgi.opendata.arcgis.com
    • geodata.vermont.gov
    • +2more
    Updated Nov 19, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Windham Regional Commission (2014). VT Data - Whitingham Zoning [Dataset]. https://geodata1-59998-vcgi.opendata.arcgis.com/datasets/windhamregional::vt-data-whitingham-zoning
    Explore at:
    Dataset updated
    Nov 19, 2014
    Dataset authored and provided by
    Windham Regional Commission
    Area covered
    Description

    This GIS data file of Whitingham's zoning districts was generated to create a zoning map for the Town of Whitingham, Vermont. The Town of Whitingham includes the Village of Jacksonville. Bylaws adopted October 20, 2021.

  5. v

    VT Data - Boundaries, All Lines

    • geodata.vermont.gov
    • geodata1-59998-vcgi.opendata.arcgis.com
    • +2more
    Updated Jun 17, 2003
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2003). VT Data - Boundaries, All Lines [Dataset]. https://geodata.vermont.gov/items/ef665468eb254244b761f2f0cd13657f
    Explore at:
    Dataset updated
    Jun 17, 2003
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    (Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.

  6. a

    Old Bennington Vermont Zoning Districts

    • hub.arcgis.com
    • geodata.vermont.gov
    • +1more
    Updated Sep 6, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jcooper_BenningtonRPC (2011). Old Bennington Vermont Zoning Districts [Dataset]. https://hub.arcgis.com/datasets/3f3b134e71554bce904c6c04c11b1d4b
    Explore at:
    Dataset updated
    Sep 6, 2011
    Dataset authored and provided by
    jcooper_BenningtonRPC
    Area covered
    Description

    This data is used to create the official Zoning Map for the Village of Old Bennington Vermont adopted on September 6, 2011.

  7. a

    Top 10 Dioceses CCF

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Top 10 Dioceses CCF [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/items/6f42562cfc57427abe9b132dc05cfeb4
    Explore at:
    Dataset updated
    Oct 26, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  8. v

    Sunderland Vermont Overlay Zoning Districts

    • geodata.vermont.gov
    • geodata1-vcgi.opendata.arcgis.com
    • +2more
    Updated Oct 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jcooper_BenningtonRPC (2015). Sunderland Vermont Overlay Zoning Districts [Dataset]. https://geodata.vermont.gov/datasets/1209d20f31c34fed9df274d31d1ef26d
    Explore at:
    Dataset updated
    Oct 19, 2015
    Dataset authored and provided by
    jcooper_BenningtonRPC
    Area covered
    Description

    These overlay zoning districts are used to create e official Sunderland, Vermont Zoning Map adopted October 19, 2015. These overlay districts include flood hazard areas and river corridors.

  9. a

    VT Data - Dummerston Zoning - Riparian Areas Overlay District

    • geodata1-59998-vcgi.opendata.arcgis.com
    • geodata.vermont.gov
    • +1more
    Updated Sep 23, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Windham Regional Commission (2015). VT Data - Dummerston Zoning - Riparian Areas Overlay District [Dataset]. https://geodata1-59998-vcgi.opendata.arcgis.com/datasets/windhamregional::vt-data-dummerston-zoning-riparian-areas-overlay-district
    Explore at:
    Dataset updated
    Sep 23, 2015
    Dataset authored and provided by
    Windham Regional Commission
    Area covered
    Description

    This GIS data file of Dummerston's zoning overlay district (riparian areas) was generated to create a zoning map for the Town of Dummerston, Vermont. Adopted September 23, 2015, bylaw amended March 28, 2018.

  10. a

    VT Data - Johnson Zoning

    • hub.arcgis.com
    • geodata.vermont.gov
    • +2more
    Updated Mar 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lamoille County Planning Commission (2018). VT Data - Johnson Zoning [Dataset]. https://hub.arcgis.com/datasets/lcpcvt::vt-data-johnson-zoning
    Explore at:
    Dataset updated
    Mar 1, 2018
    Dataset authored and provided by
    Lamoille County Planning Commission
    Area covered
    Description

    Village Storefront Building Envelope Standards (BES): Main street in character with high volume foor traffric. The purpose is to create a street-oriented public realm that encourages a more dense downtown. Multi-use/multi-purpose built environment with retail and mixed use uses. See Section 5.01 in Johnson Form Based Code for Village Storefront Building Envelope Standards. Village Neighborhood District Building Envelope Standards (BES): A multi-use neighborhood with a street-oriented public realm that encourages medium density. Multi-use/multi-purpose built environment. Typically detached/ free standing single or two family residences, small-scale multi-family, corner stores., and small-scale commercial uses. Pedestrian-oriented streets but ultimately mode neutral. Small from yards are encouraged. See Section 5.03 of Johnson Form Based Code for Village Neighborhood District Building Envelope Standards. Village General Building Envelope Standards (BES): Village is generally a multi-use, mixed use, dense downtown built environment. Typically areas adjacent to and supportive of main streets(s). Housing, commercial, and retail uses are typical;parking facilities are also allowed. The built environment can be a mix of freestanding buildings and shared wall buildings with an overall emphasis on medium foot traffic pedestrianism. See Section 5.02 in Johnson Form Based Code for Village General District Building Envelope Standards. Johnson Form Based Code Standards can be accessed online at: http://townofjohnson.com/wp-content/uploads/2014/03/Reformatted-Form-Based-Code-3-2.pdf

  11. a

    Catholic Carbon Footprint Dashboard

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Dashboard [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/app/dba43eb6dd5e4879973b57095c386c5b
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  12. a

    Catholic CO2 Footprint Beta FullSees Top10

    • catholic-geo-hub-cgisc.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic CO2 Footprint Beta FullSees Top10 [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/content/614605db0e354f7c968899eb32950dd1
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    Catholic_CO2_Footprint_Beta_FullSees_Top10Burhans, Molly A., Cheney, David M., Gerlt, R.. . “Catholic_CO2_Footprint_Beta_FullSees_Top10”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.DEVELOPED AS A POPUP LAYERMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  13. a

    VT Data - Dover Zoning - Transfer of Development Rights Overlay District

    • hub.arcgis.com
    • geodata.vermont.gov
    • +2more
    Updated Mar 1, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Windham Regional Commission (2007). VT Data - Dover Zoning - Transfer of Development Rights Overlay District [Dataset]. https://hub.arcgis.com/datasets/c7348f6fda9e4930807629fc5f0cae9d
    Explore at:
    Dataset updated
    Mar 1, 2007
    Dataset authored and provided by
    Windham Regional Commission
    Area covered
    Description

    This file, along with two others, was created to produce a new, official zoning map series for the Town of Dover, Vermont in 2007. This file represents the Transfer of Development Rights overlay district. The base zoning district and an additional overlay district are in in separate files. The zoning bylaw was adopted in March 2007, and was amended on March 5, 2013. The zoning district boundaries did not change with this amendment, and thus these boundaries remain current. The zoning districts are represented in three files: this file of town-wide zoning districts, and files representing two overlay districts (Transfer of Development zones and Sensitive Wildlife Resource overlay). Boundaries coincide in most cases with existing parcel boundaries, or are lines connecting corners or intersections of these parcel lines. Other district boundaries coincide with other features, such as the 2500-foot contour, while a few others are somewhat arbitrary. Whenever possible, lines from existing GIS data were used to create these zoning district boundaries. In most cases, these data include Dover's parcel data and 20-foot contours generated by Cartographic Technologies, Inc., or previous zoning data from Grass Roots GIS.

  14. a

    Landgrove Vermont Overlay Zoning Districts

    • rpc-vcgi.opendata.arcgis.com
    Updated Jun 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jcooper_BenningtonRPC (2017). Landgrove Vermont Overlay Zoning Districts [Dataset]. https://rpc-vcgi.opendata.arcgis.com/items/b166631d16564ba79980bd1fcdeedd82
    Explore at:
    Dataset updated
    Jun 8, 2017
    Dataset authored and provided by
    jcooper_BenningtonRPC
    Area covered
    Description

    This data represents overlay zoning districts used to create the official zoning map for the Town of Landgrove, Vermont. They include the flood hazard areas, river corridors and the scenic overlay district.

  15. a

    VT Data - Waitsfield Zoning - Adaptive Redevelopment District

    • hub.arcgis.com
    • geodata.vermont.gov
    • +1more
    Updated Dec 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Vermont Regional Planning Commission (2018). VT Data - Waitsfield Zoning - Adaptive Redevelopment District [Dataset]. https://hub.arcgis.com/datasets/caf58eeaeba04c44ba181422ad47bf88
    Explore at:
    Dataset updated
    Dec 19, 2018
    Dataset authored and provided by
    Central Vermont Regional Planning Commission
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This data depicts the zoning district of Waitsfield, Vermont that represents the area of town where retail and office uses are only permitted as conditional uses in a structure which is within 200 feet from Vermont Route 100 right-of-way. This provision is contained within Waitsfield's zoning bylaws adopted in 2016. The structure also must be a mixed use building where no less than 50% of usable floor space has a residential use. This provision does not apply to the "Oddfellows Hall/Valley Players Theatre" since it has not been historically used for residential purposes.

  16. a

    VT Data - Dover Zoning

    • rpc-vcgi.opendata.arcgis.com
    • geodata.vermont.gov
    • +2more
    Updated Mar 1, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Windham Regional Commission (2007). VT Data - Dover Zoning [Dataset]. https://rpc-vcgi.opendata.arcgis.com/maps/windhamregional::vt-data-dover-zoning/about
    Explore at:
    Dataset updated
    Mar 1, 2007
    Dataset authored and provided by
    Windham Regional Commission
    Area covered
    Description

    This file, along with two others, was created to produce a new, official zoning map series for the Town of Dover, Vermont in 2007. This file represents the base zoning districts. Overlay districts are in separate files. The zoning bylaw was adopted in March 2007, and was amended on March 5, 2013. The zoning district boundaries did not change with this amendment, and thus these boundaries remain current. The zoning districts are represented in three files: this file of town-wide zoning districts, and files representing two overlay districts (Transfer of Development zones and Sensitive Wildlife Areas overlay). Boundaries coincide in most cases with existing parcel boundaries, or are lines connecting corners or intersections of these parcel lines. Other district boundaries coincide with other features, such as the 2500-foot contour, while a few others are somewhat arbitrary. Whenever possible, lines from existing GIS data were used to create these zoning district boundaries. In most cases, these data include Dover's parcel data and 20-foot contours generated by Cartographic Technologies, Inc., or previous zoning data from Grass Roots GIS.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
VT Center for Geographic Information (2022). VT Data - Town Boundaries [Dataset]. https://hub.arcgis.com/datasets/3f464b0e1980450e9026430a635bff0a

VT Data - Town Boundaries

Explore at:
Dataset updated
Feb 7, 2022
Dataset authored and provided by
VT Center for Geographic Information
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
Description

(Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries.

It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary.

The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names.

BNDHASH includes the following feature classes:

1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built

The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors.

NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only.

  • Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
Search
Clear search
Close search
Google apps
Main menu