Facebook
TwitterMaps and Apps Gallery is a configurable group app template that can be used for displaying a collection of maps, applications, documents, and layers. Gallery contents are searchable and can be filtered using item tags. Private gallery content can be accessed by signing in to the app using your ArcGIS credentials.Use Casesbuilding a common operational picture organizing a series of maps & apps for a community eventConfigurable OptionsConfigure Maps and Apps Gallery to present content from any group in your organization and personalize the app by modifying the following options: Display a custom title and logo in the application headerUse a custom color schemeChoose between grid- and list-style layoutsEnable or disable the tag cloud which can be used to filter the items displayed in the galleryChoose to open maps and layers in ArcGIS Online, or to preview them in the app's viewerSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsMaps and Apps Gallery will display all item types supported by ArcGIS Online and Portal, although sharing maps is preferable to sharing stand-alone layers.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to create a web appOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Maps and Apps Gallery documentation.
Facebook
TwitterStatewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
Facebook
TwitterThis dynamic imagery layer features Landsat 8 and Landsat GLS imagery for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.To view this imagery layer, you'll want to add it to a map that is using the Polar projection of WGS_1984_EPSG_Alaska_Polar_Stereographic, for example the Arctic Ocean Basemap or the Arctic Imagery basemap. Other polar projections may be used within their useful limits. There is no imagery above 82°30’N due to the orbit of the satellite.Geographic CoverageArctic RegionTemporal CoverageThis layer is updated daily with new imagery.Landsat 8 revisits each point on Earth's land surface every 16 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created. Available functions on this layer include:Agriculture with DRA – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with dynamic range adjustment applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.NDSI Colorized – Normalized difference Snow index (NDSI) with color map, computed as (b3-b6)/(b3+b6) on apparent reflectance. Dark blue represents dense snow, yellow and green areas represent clouds.Bathymetric with DRA – Bands red, green, coastal/aerosol (4, 3, 1) with dynamic range adjustment. Useful in bathymetric mapping applications.Color Infrared with DRA – Bands near-IR, red, green (5, 4, 3) with dynamic range adjustment. Healthy vegetation is bright red while stressed vegetation is dull red.Geology with DRA – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with dynamic range adjustment. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color with DRA – Natural Color bands red, green, blue (4, 3, 2) displayed with dynamic range adjustmentShort-wave Infrared with DRA – Bands shortwave IR-2, shortwave IR-1, red (7, 6, 4) with dynamic range adjustmentAgriculture – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with fixed stretch applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Bathymetry – Bands red, green, coastal/aerosol (4, 3, 1) with fixed stretch applied on apparent reflectance. Useful in bathymetric mapping applications.Color Infrared – Bands near-IR, red, green (5, 4, 3) with a fixed stretch. Healthy vegetation is bright red while stressed vegetation is dull red.Geology – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with a fixed stretch. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color – Natural Color bands red, green, blue (4, 3, 2) displayed with a fixed stretch.Short-wave Infrared – Bands shortwave IR-2, shortwave IR-1, red (7, 5, 4) with a fixed stretchNormalized Difference Moisture Index Colorized – Normalized Difference Moisture Index with color map, computed as (b5 - b6)/(b5 + b6). Wetlands and moist areas are blues, and dry areas in deep yellow and brownNDSI Raw – Normalized difference Snow index (NDSI) computed as (b3 - b6) / (b3 + b6)NDVI Raw – Normalized difference vegetation index (NDVI) computed as (b5 - b4) / (b5 + b4)NBR Raw – Normalized Burn Ratio (NBR) computed as (b5 - b7) / (b5 + b7)Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2
Band
Description
Wavelength (µm)
Spatial Resolution (m)
1
Coastal aerosol
0.43 - 0.45
30
2
Blue
0.45 - 0.51
30
3
Green
0.53 - 0.59
30
4
Red
0.64 - 0.67
30
5
Near Infrared (NIR)
0.85 - 0.88
30
6
SWIR 1
1.57 - 1.65
30
7
SWIR 2
2.11 - 2.29
30
8
Cirrus (in OLI this is band 9)
1.36 - 1.38
30
9
QA Band (available with Collection 1)*
NA
30
*More about the Quality Assessment Band The layer also provides access to TIRS bands as follows: BandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Unlocking Landsat in the Arctic is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
Facebook
TwitterThis dynamic imagery layer features Landsat 8 and Landsat GLS imagery for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.
To view this imagery layer, you'll want to add it to a web map that is using the Polar projection of WGS_1984_Antarctic_Polar_Stereographic, for example, the Antarctic Imagery basemap. Other polar projections may be used within their useful limits. There is no imagery below 82°45’S due to the orbit of the satellite.
Geographic CoverageAntarcticaTemporal CoverageThis layer is updated daily with new imagery.Landsat 8 revisits each point on Earth's land surface every 16 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created. Available functions on this layer include:Agriculture with DRA – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with dynamic range adjustment applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.NDSI Colorized – Normalized difference Snow index (NDSI) with color map, computed as (b3-b6)/(b3+b6) on apparent reflectance. Dark blue represents dense snow, yellow and green areas represent clouds.Bathymetric with DRA – Bands red, green, coastal/aerosol (4, 3, 1) with dynamic range adjustment. Useful in bathymetric mapping applications.Color Infrared with DRA – Bands near-IR, red, green (5, 4, 3) with dynamic range adjustment. Healthy vegetation is bright red while stressed vegetation is dull red.Geology with DRA – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with dynamic range adjustment. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color with DRA – Natural Color bands red, green, blue (4, 3, 2) displayed with dynamic range adjustmentShort-wave Infrared with DRA – Bands shortwave IR-2, shortwave IR-1, red (7, 6, 4) with dynamic range adjustmentAgriculture – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with fixed stretch applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Bathymetry – Bands red, green, coastal/aerosol (4, 3, 1) with fixed stretch applied on apparent reflectance. Useful in bathymetric mapping applications.Color Infrared – Bands near-IR, red, green (5, 4, 3) with a fixed stretch. Healthy vegetation is bright red while stressed vegetation is dull red.Geology – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with a fixed stretch. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color – Natural Color bands red, green, blue (4, 3, 2) displayed with a fixed stretch.Short-wave Infrared – Bands shortwave IR-2, shortwave IR-1, red (7, 5, 4) with a fixed stretchNormalized Difference Moisture Index Colorized – Normalized Difference Moisture Index with color map, computed as (b5 - b6)/(b5 + b6). Wetlands and moist areas are blues, and dry areas in deep yellow and brownNDSI Raw – Normalized difference Snow index (NDSI) computed as (b3 - b6) / (b3 + b6)NDVI Raw – Normalized difference vegetation index (NDVI) computed as (b5 - b4) / (b5 + b4)NBR Raw – Normalized Burn Ratio (NBR) computed as (b5 - b7) / (b5 + b7)Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment Band The layer also provides access to TIRS bands as follows: BandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Unlocking Landsat in the Antarctic app is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
Facebook
TwitterMature Support Notice: This item is in mature support as of February 2024. A new version of this item is available for your use. This web application highlights some of the capabilities for accessing Landsat imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Landsat images on a daily basis. Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Landsat Explorer app provides the power of Landsat satellites, which gather data beyond what the eye can see. Use this app to draw on Landsat's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the entire Landsat archive to visualize how the Earth's surface has changed over the last forty years.Quick access to the following band combinations and indices is provided: Agriculture : Highlights agriculture in bright green; Bands 6, 5, 2Natural Color : Sharpened with 15m panchromatic band; Bands 4, 3, 2 +8Color Infrared : Healthy vegetation is bright red; Bands 5, 4 ,3 SWIR (Short Wave Infrared) : Highlights rock formations; Bands 7, 6, 4Geology : Highlights geologic features; Bands 7, 6, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Panchromatic : Panchromatic images at 15m; Band 8Vegetation Index : Normalized Difference Vegetation Index(NDVI); (Band 5 - Band 4)/(Band 5 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 5 - Band 6)/(Band 5 + Band 6)SAVI : Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 5 - Band 4)/(Band 5 + Band 4 + 0.5))Water Index : Offset + Scale*(Band 3 - Band 6)/(Band 3 + Band 6)Burn Index : Offset + Scale*(Band 5 - Band 7)/(Band 5 + Band 7)Urban Index : Offset + Scale*(Band 5 - Band 6)/(Band 5 + Band 6)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinations The Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Stories tool will direct you to pre-selected interesting locations. The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript. The following Imagery Layers are being accessed : Multispectral Landsat - Provides access to 30m 8-band multispectral imagery and a range of functions that provide different band combinations and indices.Pansharpened Landsat - Provides access to 15m 4-band (Red, Green, Blue and NIR) panchromatic-sharpened imagery.Panchromatic Landsat - Provides access to 15m panchromatic imagery. These imagery layers can be accessed through the public group Landsat Community on ArcGIS Online.
Facebook
TwitterMature Support Notice: This item is in mature support as of February 2025. A new version of this item is available for your use. This web application highlights some of the capabilities for accessing Sentinel-2 imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Sentinel-2 images on a daily basis.Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Sentinel-2 Explorer app provides the power of Sentinel-2 satellites, which gather data beyond what the eye can see. Use this app to draw on Sentinel's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the Sentinel-2 archive to visualize how the Earth's surface has changed over the last fourteen monthsQuick access to the following band combinations and indices is provided: BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020 Agriculture : Highlights vigorous vegetation in bright green, stressed vegetation dull green and bare areas brown; Bands 11, 8, 2Natural Color : Bands 4, 3, 2Color Infrared : Healthy vegetation is bright red while stressed vegetation is dull red; Bands 8, 4 ,3 SWIR (Short-wave Infrared) : Highlights rock formations; Bands 12, 11, 4Geology : Highlights geologic features; Bands 12, 11, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Vegetation Index : Normalized Difference Vegetation Index(NDVI) with Colormap ; (Band 8 - Band 4)/(Band 8 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 8 - Band 11)/(Band 8 + Band 11)Normalized Burn Ratio : (Band 8 - Band 12)/(Band 8 + Band 12)Built-Up Index : (Band 11 - Band 8)/(Band 11 + Band 8)NDVI Raw : Normalized Difference Vegetation Index(NDVI); (Band 8 - Band 4)/(Band 8 + Band 4)NDVI - VRE only Raw : NDVI with VRE bands only; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - VRE only Colorized : NDVI with VRE bands only with Colormap; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - with VRE Raw : Also known as NDRE. NDVI with VRE band 5 and NIR band 8; (Band 8 - Band 5)/(Band 8 + Band 5)NDVI - with VRE Colorized : Also known as NDRE with Colormap; (Band 8 - Band 5)/(Band 8 + Band 5)NDWI Raw : Normalized Difference Water index with Green band and NIR band; (Band 3 - Band 8)/(Band 3 + Band 8)NDWI - with VRE Raw : Normalized Difference Water index with VRE band 5 and Green band 3; (Band 3 - Band 5)/(Band 3 + Band 5)NDWI - with VRE Colorized : NDWI index with VRE band 5 and Green band 3 with Colormap; (Band 3 - Band 5)/(Band 3 + Band 5)Custom SAVI : (Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 8 - Band 4)/(Band 8 + Band 4 + 0.5))Custom Water Index : Offset + Scale*(Band 3 - Band 12)/(Band 3 + Band 12) Custom Burn Index : Offset + Scale*(Band 8 - Band 13)/(Band 8 + Band 13)Urban Index : Offset + Scale*(Band 8 - Band 12)/(Band 8 + Band 12)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinations The Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for indices like NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Bookmark tool will direct you to pre-selected interesting locations.NOTE: Using the Time tool to access imagery in the Sentinel-2 archive requires an ArcGIS account. The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript. The following Imagery Layer are being accessed : Sentinel-2 - Provides access to 10, 20, and 60m 13-band multispectral imagery and a range of functions that provide different band combinations and indices.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterThis web application highlights some of the capabilities for accessing Landsat imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Landsat images on a daily basis.
Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Landsat Explorer app provides the power of Landsat satellites, which gather data beyond what the eye can see. Use this app to draw on Landsat's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the entire Landsat archive to visualize how the Earth's surface has changed over the last forty years.
Quick access to the following band combinations and indices is provided:
Facebook
TwitterThis web application highlights some of the capabilities for accessing Sentinel-2 imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Sentinel-2 images on a daily basis.Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Sentinel-2 Explorer app provides the power of Sentinel-2 satellites, which gather data beyond what the eye can see. Use this app to draw on Sentinel's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the Sentinel-2 archive to visualize how the Earth's surface has changed over the last fourteen monthsQuick access to the following band combinations and indices is provided:BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Agriculture : Highlights vigorous vegetation in bright green, stressed vegetation dull green and bare areas brown; Bands 11, 8, 2Natural Color : Bands 4, 3, 2Color Infrared : Healthy vegetation is bright red while stressed vegetation is dull red; Bands 8, 4 ,3 SWIR (Short-wave Infrared) : Highlights rock formations; Bands 12, 11, 4Geology : Highlights geologic features; Bands 12, 11, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Vegetation Index : Normalized Difference Vegetation Index(NDVI) with Colormap ; (Band 8 - Band 4)/(Band 8 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 8 - Band 11)/(Band 8 + Band 11)Normalized Burn Ratio : (Band 8 - Band 12)/(Band 8 + Band 12)Built-Up Index : (Band 11 - Band 8)/(Band 11 + Band 8)NDVI Raw : Normalized Difference Vegetation Index(NDVI); (Band 8 - Band 4)/(Band 8 + Band 4)NDVI - VRE only Raw : NDVI with VRE bands only; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - VRE only Colorized : NDVI with VRE bands only with Colormap; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - with VRE Raw : Also known as NDRE. NDVI with VRE band 5 and NIR band 8; (Band 8 - Band 5)/(Band 8 + Band 5)NDVI - with VRE Colorized : Also known as NDRE with Colormap; (Band 8 - Band 5)/(Band 8 + Band 5)NDWI Raw : Normalized Difference Water index with Green band and NIR band; (Band 3 - Band 8)/(Band 3 + Band 8)NDWI - with VRE Raw : Normalized Difference Water index with VRE band 5 and Green band 3; (Band 3 - Band 5)/(Band 3 + Band 5)NDWI - with VRE Colorized : NDWI index with VRE band 5 and Green band 3 with Colormap; (Band 3 - Band 5)/(Band 3 + Band 5)Custom SAVI : (Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 8 - Band 4)/(Band 8 + Band 4 + 0.5))Custom Water Index : Offset + Scale*(Band 3 - Band 12)/(Band 3 + Band 12)Custom Burn Index : Offset + Scale*(Band 8 - Band 13)/(Band 8 + Band 13)Urban Index : Offset + Scale*(Band 8 - Band 12)/(Band 8 + Band 12)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinationsThe Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for indices like NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Bookmark tool will direct you to pre-selected interesting locations.NOTE: Using the Time tool to access imagery in the Sentinel-2 archive requires an ArcGIS account.The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript.The following Imagery Layer are being accessed : Sentinel-2 - Provides access to 10, 20, and 60m 13-band multispectral imagery and a range of functions that provide different band combinations and indices.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
3D buildings. This dataset is a 3D building multipatch created using lidar point cloud bare earth points and building points to create a normalized data surface. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. All data returns were removed from the dataset within the United States Secret Service redaction boundary except for classified ground points and classified water points.The scene layer complies with the Indexed 3D Scene layer (I3S) format. The I3S format is an open 3D content delivery format used to disseminate 3D GIS data to mobile, web, and desktop clients.
Facebook
TwitterThis map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
Facebook
TwitterPurpose:To provide a detailed spatial representation of drainage paths derived from LiDAR data within Wood County. This dataset supports hydrological analysis, resource management, and environmental planning.Supplemental Information:This dataset was created using high-resolution LiDAR data to identify and map drainage paths, ensuring accuracy in representing hydrological flow patterns and their attributes.Keywords:LiDAR, Drainage Paths, Hydrology, Environmental Planning, Resource Management, Wood CountyLineage:Source(s):Derived from high-resolution LiDAR data collected for Wood County.Process Step(s):The dataset was generated by Intern Kingsley Kanjin using advanced LiDAR processing techniques to delineate drainage paths. Steps included point cloud processing, flow accumulation analysis, and vectorization to create a line layer of drainage paths.Positional Accuracy:Consistent with the original LiDAR data, ensuring a high degree of spatial accuracy for hydrological modeling and analysis.Attribute Accuracy:Attributes have been verified for consistency with the LiDAR-derived flow accumulation and drainage path modeling.Logical Consistency:The dataset is logically consistent, with continuous drainage lines validated for hydrological network integrity.Type of Data:Vector (Polyline)Composition:The dataset consists of polyline features representing drainage paths. Attributes may include flow direction, stream order, and accumulation values.Coordinate System:NAD 1983 NSRS2007 StatePlane Ohio North FIPS 3401 (US Feet)Projection:Lambert Conformal ConicDatum:NAD 1983 NSRS2007Time Period of Content:Data represents conditions as captured during the LiDAR survey for Wood County.Currentness Reference:The dataset is updated based on new LiDAR surveys or significant changes in land use and hydrological features.ContactsPrimary Contact:Name: David L. PriceOrganization: Wood County GIS DepartmentPosition: GIS CoordinatorAddress: 1 Court House Sq., Bowling Green, OH 43402Phone: (419) 373-3984Email: dprice@woodcountyohio.govDistributor:Name: Wood County GIS DepartmentResource Description: Available upon request through the Wood County GIS Public Data Site.Distribution Liability:Wood County is not responsible for improper or incorrect use of this dataset. The dataset is provided "as-is" without warranty for completeness or accuracy for any specific use.Metadata Date:January 9, 2025Metadata Review Date:January 9, 2026Metadata Contact:Name: David L. PricePhone: (419) 373-3984Email: dprice@woodcountyohio.gov
Facebook
TwitterAccurate and consistent mangrove extent at the national scale over time is a necessity for proper conservation planning for mangroves, including conservation and restoration. Many analyses conducted in Madagascar have accurately assessed mangroves, but have not been repeated over time. In addition, changing datasets and technologies result in differing approaches which, when applied cannot be accurately combined or compared. For this reason, WWF-Germany has undertaken the first consistent mangrove assessment over a 30 year time period using Landsat satellite imagery and automated processing in Google Earth Engine. The application of standardized and automated methods have allowed for a consistent view of mangrove extent and change from 1995-2018, at 30m resolution. Results are compared with existing analyses, and complimented by biomass assessment, hotspots of change and a first look at mangrove degradation.The full report is available here. the data can be downloaded here. Cloud-free Landsat image composites combining the best pixels from a calendar year were created for each time pivot: 1995, 2000, 2005, 2010, 2015 and 2018. When not enough observations met the cloud criteria, the time frame was expanded to include 6 months from the previous and following calendar year, so that some composites required 2 years of data to composite. In the case of 1990, not enough satellite images were available to create a complete coverage. All compositing and mapping was performed in Google Earth Engine.Starting with the latest date composite, a supervised classification using the RandomForest classifier was executed using available information and visual interpretation of Google Earth Imagery. Polygons of known mangrove and not-mangrove areas were digitized, and a random point sample selected in these two types to provide training and validation for the classification. The final mangrove layer was visually cleaned to remove any extraneous mangrove areas or errors.All training data for previous years were then automatically created using the later year mangrove map. This was performed using a dilate function to restrict random point selection to the core area of large mangrove patches. This enabled an almost entirely automatic process. Accuracy assessment was performed using mangrove extent mapped from 2.5m SPOT imagery for the year 2012, on the Landsat-derived map for the year 2010. Additional training points were acquired from Google Earth High resolution imagery.All mangrove map layers were then analyzed in a GIS. Mangrove extent for each time period was overlaid to assign transitions between mangrove/not mangrove over time (i.e. loss 1995; gain 2010). A dynamic class was assigned to any pixels which had at least 2 observations as mangrove over the 6 time steps, and underwent multiple gains and losses with no clear trend. Additionally, temporal filtering was used to remove any pixels classified with low confidence (i.e. a single year classified as mangrove but all other years before and after non-mangrove and vice versa). Mangrove extent and change (both gain and loss and net change) was quantified by district, region and protected area in hectares.The accuracy assessment was conducted using an area weighted stratified random sampling design. As current field validation data was not available, the mangrove classification result of OCEA (2015) was used to sample control points. This classification was generated for the year 2013 from SPOT 2m resolution data. Control points for mangrove areas to compare with the Landsat 2015 map were set in areas of dense mangrove (attribute “COUVERT” = dense) with at least 2 ha area and at least 30m away from the mangrove edge to avoid spatial resolution errors. Non-mangrove control points were set in areas of bare land (attribute “COUVERT” = “nu”) with at least 2 ha area and 30m away from the mangrove edge. In total 4,000 control points of for each of the two classes were placed randomly at least 30m apart from each other.The change map was also evaluated using an area weighted stratified random sampling design. As field validation data was not available current and historic satellite images in Google Earth were used to sample control points after creating396 stratified random sample points from the classification results of each of the four classes placed randomly and area weighted at least 30m apart from each other. For this assessment the AcATaMa toolbox was used in QGIS.The estimates of mangrove area at the national scale along with estimated annual % change are shown in table 1. More detailed information are provided in the Annex. Table 1. Mangrove extent (ha) estimated for Madagascar and annual % change, calculated from the prior mangrove extentYearMangrove (ha)Annual % Change1995310 452-2000294 387-1.032005279 618-1.02010258 340-1.522015239 152-1.492018236 402-0.38**as the analysis was complete mid-2018 these results are expected to be underestimated. The figures provided by this study lie within the range of existing published values, and are most similar to Giri & Maulhausen, 2008 who use a similar data and approach.Table 3: Producer and User Accuracy and Errors.Standard calculation PAUAOCloss98,75%61,24%1,25%38,76%dynamic77,78%93,33%22,22%6,67%stable81,41%99,10%18,59%0,90%gain100,00%87,50%0,00%12,50%
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterMaps and Apps Gallery is a configurable group app template that can be used for displaying a collection of maps, applications, documents, and layers. Gallery contents are searchable and can be filtered using item tags. Private gallery content can be accessed by signing in to the app using your ArcGIS credentials.Use Casesbuilding a common operational picture organizing a series of maps & apps for a community eventConfigurable OptionsConfigure Maps and Apps Gallery to present content from any group in your organization and personalize the app by modifying the following options: Display a custom title and logo in the application headerUse a custom color schemeChoose between grid- and list-style layoutsEnable or disable the tag cloud which can be used to filter the items displayed in the galleryChoose to open maps and layers in ArcGIS Online, or to preview them in the app's viewerSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsMaps and Apps Gallery will display all item types supported by ArcGIS Online and Portal, although sharing maps is preferable to sharing stand-alone layers.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to create a web appOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Maps and Apps Gallery documentation.