Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this seminar, you will learn how to use Collector for ArcGIS to download maps, create new GIS features, as well as update existing ones when disconnected from the Internet, and then synchronize changes back to the office when you are connected. In addition, you will learn how to create maps and publish services for devices.This seminar was developed to support the following:Collector for ArcGIS (Android) 10.2Collector for ArcGIS (iOS) 10.2
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this seminar, the presenters will introduce essential concepts of Collector for ArcGIS and show how this app integrates with other components of the ArcGIS platform to provide a seamless data management workflow. You will also learn how anyone in your organization can easily capture and update data in the field, right from their smartphone or tablet.This seminar was developed to support the following:ArcGIS Desktop 10.2.2 (Basic)ArcGIS OnlineCollector for ArcGIS (Android) 10.4Collector for ArcGIS (iOS) 10.4Collector for ArcGIS (Windows) 10.4
Summary: How to configure Esri Collector for ArcGIS with a Bad Elf GPS Receiver for High-Accuracy Field Data Collection Storymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 1: Standard 1-LS3-1 - Heredity: Inheritance and Variation of Traits - Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parentsGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS1-2 - Earth’s Place in the Universe - Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night skyGrade level(s) 6-8: Standard MS-LS4-5 - Biological Evolution: Unity and Diversity - Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.Grade level(s) 6-8: Standard MS-LS4-6 - Biological Evolution: Unity and Diversity - Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over timeGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 9-12: Standard HS-LS4-4 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence for how natural selection leads to adaptation of populationsGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:featurebadelfselectgpsApproximate Flesch-Kincaid reading grade level: 9.9. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Data Collector market is experiencing robust growth, driven by increasing adoption of location-based services, the expanding need for precise geospatial data in various sectors, and advancements in data collection technologies. This market is projected to reach a substantial size, estimated at $8 billion in 2025, exhibiting a healthy Compound Annual Growth Rate (CAGR) of 7%. This growth is fueled by several key factors: the rising demand for efficient and accurate data collection in infrastructure development, precision agriculture, environmental monitoring, and urban planning; the increasing affordability and accessibility of advanced data collectors; and the growing integration of GIS data with other technologies like IoT and AI for better decision-making. The market is segmented by various hardware and software solutions, offering different levels of functionality and pricing points. Key players, including Garmin, Handheld Group, Hexagon (Leica Geosystems), Trimble, and Esri, are driving innovation through the development of ruggedized handheld devices, cloud-based data management platforms, and advanced data processing tools. Geographic growth is expected to be varied, with North America and Europe maintaining a strong market presence, while emerging economies in Asia-Pacific and Latin America are projected to show significant growth due to increasing infrastructure projects and investment in digital technologies. Competitive pressures are increasing as new players enter the market, encouraging innovation and the creation of more specialized and cost-effective solutions.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Collector market size is anticipated to grow from USD 4.5 billion in 2023 to approximately USD 12.3 billion by 2032, at a compound annual growth rate (CAGR) of 11.6%. The growth of this market is largely driven by the increasing adoption of GIS technology across various industries, advances in technology, and the need for effective spatial data management.
An important factor contributing to the growth of the GIS Data Collector market is the rising demand for geospatial information across different sectors such as agriculture, construction, and transportation. The integration of advanced technologies like IoT and AI with GIS systems enables the collection and analysis of real-time data, which is crucial for effective decision-making. The increasing awareness about the benefits of GIS technology and the growing need for efficient land management are also fuelling market growth.
The government sector plays a significant role in the expansion of the GIS Data Collector market. Governments worldwide are investing heavily in GIS technology for urban planning, disaster management, and environmental monitoring. These investments are driven by the need for accurate and timely spatial data to address critical issues such as climate change, urbanization, and resource management. Moreover, regulatory policies mandating the use of GIS technology for infrastructure development and environmental conservation are further propelling market growth.
Another major growth factor in the GIS Data Collector market is the continuous technological advancements in GIS software and hardware. The development of user-friendly and cost-effective GIS solutions has made it easier for organizations to adopt and integrate GIS technology into their operations. Additionally, the proliferation of mobile GIS applications has enabled field data collection in remote areas, thus expanding the scope of GIS technology. The advent of cloud computing has further revolutionized the GIS market by offering scalable and flexible solutions for spatial data management.
Regionally, North America holds the largest share of the GIS Data Collector market, driven by the presence of key market players, advanced technological infrastructure, and high adoption rates of GIS technology across various industries. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, primarily due to rapid urbanization, government initiatives promoting GIS adoption, and increasing investments in smart city projects. Other regions such as Europe, Latin America, and the Middle East & Africa are also experiencing significant growth in the GIS Data Collector market, thanks to increasing awareness and adoption of GIS technology.
The role of a GPS Field Controller is becoming increasingly pivotal in the GIS Data Collector market. These devices are essential for ensuring that data collected in the field is accurate and reliable. By providing real-time positioning data, GPS Field Controllers enable precise mapping and spatial analysis, which are critical for applications such as urban planning, agriculture, and transportation. The integration of GPS technology with GIS systems allows for seamless data synchronization and enhances the efficiency of data collection processes. As the demand for real-time spatial data continues to grow, the importance of GPS Field Controllers in the GIS ecosystem is expected to rise, driving further innovations and advancements in this segment.
The GIS Data Collector market is segmented by component into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of GIS systems. The hardware segment includes devices such as GPS units, laser rangefinders, and mobile GIS devices used for field data collection. The software segment encompasses various GIS applications and platforms used for data analysis, mapping, and visualization. The services segment includes consulting, training, maintenance, and support services provided by GIS vendors and solution providers.
In the hardware segment, the demand for advanced GPS units and mobile GIS devices is increasing, driven by the need for accurate and real-time spatial data collection. These devices are equipped with high-precision sensors and advanced features such as real-time kinematic (RTK) positioning, which enhance
VDOT's mission is to plan, deliver, operate and maintain a transportation system that is safe, enables easy movement of people and goods, enhances the economy and improves our quality of life.VDOT ArcGIS Online is an interactive portal through which VDOT staff, business partners, and the public can access web mapping applications, map publications, and geospatial data pertaining to transportation in Virginia. Users can learn about, browse, search, and/or download data from this site.The products on this site are for informational purposes and may not have been prepared for legal, engineering or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.Questions? Contact the Spatial Intelligence Group.
Essential configurations for highly scalable ArcGIS Online web apps (ArcGIS Blog).Learn best practices for configuring web applications that receive a high amount of web traffic, use a quick checklist focus on critical settings._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Reporter for MRGPThe Reporter for MRGP doesn't require you to download any apps to complete an inventory; all you need is an internet connection and web browser. The Reporter includes culverts and bridges from VTCULVERTS, town highways from Vtrans and the current status of the MRGP segments and outlets on the map.MRGP Fieldworker SolutionNotes on MRGP fieldworker solution: July 12, 2021. The MRGP map now displays the current status of road segments and outlets. Fieldworkers using the MRGP solution should remove the offline map area(s) from their device, and keep their new offline map current, by syncing their map. Enabling auto-sync will get you the current segment or outlet status automatically. See FAQ section below for more information. Road Erosion Inventory forms are available and have a new look and feel this year. The drainage ditch survey is broken out into three pages for a better user experience. The first page contains survey and segment information, the second; the inventory, and the third; barriers to implementation. You will notice the questions are outlined by section so it’s easier to follow along too. The questions have remained the same. Survey123 has a new option requiring users to update surveys on their mobile device. That option has been enabled for the two MRGP Survey123 forms. Step 1: Download the free mobile appsFor fieldworkers to collect and submit data to VT DEC, two free apps are required: ArcGIS Collector or Field Maps and Survey123. ArcGIS Collector or Field Maps is used first to locate the segment or outlet for inventory, and Survey123, for completing the Road Erosion Inventory. ArcGIS Field Maps is ESRI’s new all-in-one app for field work and will replace ArcGIS Collector. You can download ArcGIS Collector or ArcGIS Fields Maps and Survey123 from the Google Play Store.You can download ArcGIS Collector or ArcGIS Field Maps and Survey123 from Apple Store.
Step 2: Sign into the mobile appYou will need appropriate credentials to access fieldworker solution, please contact your Regional Planning Commission’s Transportation Planner or Jim Ryan (MRGP Program Lead) at (802) 490-6140.Open Collector for ArcGIS, select ‘ArcGIS Online’ as shown below, and enter the user name and password. The credential is saved unless you sign out. Step 3: Open the MRGP Mobile MapIf you’re working in an area that has a reliable data connection (e.g. LTE or 4G), open the map below by selecting it.Step 4: Select a road segment or outlet for inventoryUse your location, button circled in red below, select the segment or outlet you need to inventory, and select 'Update Road Segment Status' from the pop-up to launch Survey123.
Step 5: Complete the Road Erosion Inventory and submit inventory to DECSelecting 'Update Road Segment Status' opens Survey123, downloads the relevant survey and pre-populates the REI with important information for reporting to DEC. You will have to enter the same username and password to access the REI forms. The credential is saved unless you sign out of Survey123.Complete the survey using the appropriate supplement below and submit the assessment directly to VT DEC.Paved Roads with Catch Basin SupplementPaved and Gravel Roads with Drainage Ditches Supplement
Step 6: Repeat!Go back to the ArcGIS Collector or Field Maps and select the next segment for inventory and repeat steps 1-5.
If you have question related to inventory protocol reach out to Jim Ryan, MRGP Program Lead, at jim.ryan@vermont.gov, (802) 490-6140If you have questions about implementing the mobile data collection piece please contact Ryan Knox, ADS-ANR IT, at ryan.knox@vermont.gov, (802) 793-0297
The location where I'm doing inventory does not have a data coverage (LTE or 4G). What can I do?ArcGIS Collector allows you take map areas offline when you think there will be spotty or no data coverage. I made a video to demonstrate the steps for taking map areas offline - https://youtu.be/OEsJrCVT8BISurvey123 operates offline by default but you need to download the survey. My recommendation is to test the fieldworker solution (Steps 1-5) before you go into the field but don't submit the test survey.Where can I download the Road Erosion Scoring shown on the the Atlas? You can download the scoring for both outlets and road segments through the VT Open Geodata Portal.https://geodata.vermont.gov/maps/VTANR::mrgp-scoring-open-data/aboutHow do I use my own ArcGIS Collector map for launching the official MRGP REI survey form? You can use the following custom url for launching Survey123, open the REI and prepopulate answers in the form. More information is here. TIP: add what's below directly in the HTML view of the popup not the link as described in the post I provided.
Hydrologically connected
segments (lines):Update Road Segment Status
Segment ID: {SegmentID}
Segment Status: {SegmentStatus}
{RoadName}, {Municipality}
Outlets: {Outlets}
Hydrologically
connected outlets (points):Update Outlet Status
Outlet ID: {OutletID}
Municipality: {Municipality}
Erosion: {ErosionValue}
How do I save my name and organization information used in subsequent surveys? Watch this short video or execute the steps below:
Open Survey123 and open a blank REI form (Collect button) Note: it's important to open a blank form so you don't save the same segment id for all your surveys Fill-in your 'Name' and 'Organization' and clear the 'Date of Assessment field' (x button). Using the favorites menu in the top-right corner you can use the current state of your survey to 'Set as favorite answers.' Close survey and 'Save this survey in Drafts.' Use Collector to launch survey from selected feature (segment or outlet). Using the favorites menu again, 'Paste answers from favorite.
What if the map doesn't have the outlet or road segment I need to inventory for the MRGP? Go Directly to Survey123 and complete the appropriate Road Erosion Inventory and submit the data to DEC. The survey includes a Geopoint (location) that we can use to determine where you completed the inventory.
Where can I view the Road Erosion Inventories completed with Survey123? Using the MRGP credentials you have access to another map that shows completed REIs.Web map - Completed Road Erosion Inventories for MRGPWhere can I download the 2020-2021 data collected with Survey123?Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f8a11de8a5a0469596ef11429ab49465Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=ae13a925a662490184d5c5b1b9621672Where can I download the 2019 data collected with Survey123?
Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f60050c6f3c04c60b053470483acb5b1 Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=753006f9ecf144ccac8ce37772bb2c03 Where can I download the 2018 data collected with Survey123?Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=124b617d142e4a1dbcfb78a00e8b9bc5Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=8abcc0fcec0441ce8ae6cd38e3812b1b Where can I download the Hydrologically Connected Road Segments and Outlets?Vermont Open Data Geoportal - https://geodata.vermont.gov/datasets/VTANR::hydrologically-connected-road-segments-1/about
This 2019 version of the MRGP Outlets is based on professional mapping completed using DEC's Stormwater Infrastructure dataset. In catch basin systems, work was completed to match outlets to road segments that drain to them. The outlets here correspond to Outlet IDs identified in the Hydrologically connected roads segments layer. For outlets that meet standard, road segments will also meet the standard for MRGP compliance.
Click here to open the ArcGIS Online Map Viewer and work through the examples shown belowBefore adding data to ArcGIS Online we reccomend that you log in. For full functionality use a free schools subscription, or if this is not possible you can use a free public account which will have reduced functionality.
Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineFind Mount Everest and save the 3D map so that it opens with an amazing view of the mountainShare your 3D map with a friend or colleague and get some feed back
This document is a 12-page PDF document that is part instruction, part self-assessment tool, part helpfile reference tool. Users are taken from accessing ArcGIS Online without login, through ArcGIS Online public account, to ArcGIS Online Organization account. Quickly browsable content chunks let users scan topics and focus on those skills and concepts with which they have not yet grown comfortable.
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global GIS Data Collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising need for accurate land surveying and mapping in various sectors. The market, currently valued at approximately $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033. This growth is fueled by advancements in technology, such as the integration of high-resolution sensors, GPS capabilities, and cloud-based data management systems into these collectors. The high-precision segment is expected to witness significant growth due to its enhanced accuracy and ability to support complex applications like autonomous driving and environmental monitoring. Key applications include agriculture, where precise data collection improves crop yields and resource management, industrial sectors relying on accurate site surveys, and forestry management for sustainable logging practices. Geographic expansion is another significant driver. While North America currently holds a substantial market share due to early adoption and technological advancements, rapid economic growth and increasing infrastructure investments in Asia-Pacific, particularly in China and India, are expected to propel substantial market expansion in these regions. The market faces certain restraints, including the high initial investment cost of GIS data collectors and the need for specialized training for effective operation and data interpretation. However, the long-term benefits of improved efficiency, accuracy, and data-driven decision-making are overcoming these challenges, leading to sustained market growth. The presence of established players like Garmin, Trimble, and Hexagon, alongside emerging regional companies, fosters competition and innovation, contributing to the market’s dynamic landscape.
Click here to open the ArcGIS Online Map Viewer and work through the examples shown belowTo add spreadsheet data to ArcGIS Online you need to log in.
This is a training dataset for the ArcGIS Collector application. This training will be held August 24, 2017.
Click here to open the ArcGIS Online Map Viewer and work through the examples shown below.You will need a login to save a map inside an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).
To Digitise in ArcGIS Online you will need to Add Map Notes. Follow the following steps to digitise the area of an agricultural field:
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent clay (clay).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, clay is defined as particles that are smaller than 0.002mm, making them only visible in an electron microscope. Clay soils contain low amounts of air, and water drains through them very slowly.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for percent clay are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of clay particles (< 0.002 mm) in the fine earth fraction in g/100g (%)Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for clay were used to create this layer. You may access the percent clay in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this seminar, you will learn how to use Collector for ArcGIS to download maps, create new GIS features, as well as update existing ones when disconnected from the Internet, and then synchronize changes back to the office when you are connected. In addition, you will learn how to create maps and publish services for devices.This seminar was developed to support the following:Collector for ArcGIS (Android) 10.2Collector for ArcGIS (iOS) 10.2