90 datasets found
  1. Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes [Dataset]. https://catalog.data.gov/dataset/charles-m-russell-national-wildlife-refuge-fire-history-gis-feature-classes
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.

  2. Introduction to ArcGIS Pro Part 2

    • teachwithgis.co.uk
    • lecture-with-gis-esriukeducation.hub.arcgis.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2024). Introduction to ArcGIS Pro Part 2 [Dataset]. https://teachwithgis.co.uk/datasets/introduction-to-arcgis-pro-part-2
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Attribute tables are an essential part of working with GIS. In addition to the spatial element, feature classes will have additional data associated to them which can be viewed within the attribute table.To open an attribute table...Right click a layer within the contents paneClick 'Attribute Table'.

  3. o

    Data from: Scarps

    • geohub.oregon.gov
    • data.oregon.gov
    • +3more
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2024). Scarps [Dataset]. https://geohub.oregon.gov/datasets/oregon-geo::scarps
    Explore at:
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    State of Oregon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    SLIDO-4.5 is an Esri ArcGIS version 10.7 file geodatabase which can be downloaded here: https://www.oregon.gov/dogami/slido/Pages/data.aspx The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total, as well as two raster data sets, one individual table, and two individual feature classes. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.5.

  4. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  5. a

    Deposits

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data.oregon.gov
    • +3more
    Updated Apr 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2024). Deposits [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/oregon-geo::deposits
    Explore at:
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    State of Oregon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    SLIDO-4.5 is an Esri ArcGIS version 10.7 file geodatabase which can be downloaded here: https://www.oregon.gov/dogami/slido/Pages/data.aspx The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total, as well as two raster data sets, one individual table, and two individual feature classes. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.5.

  6. g

    Landslide and Debris Flow Hazard | gimi9.com

    • gimi9.com
    Updated Dec 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Landslide and Debris Flow Hazard | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_landslide-and-debris-flow-hazard
    Explore at:
    Dataset updated
    Dec 21, 2019
    Description

    SLIDO-4.4 is an Esri ArcGIS version 10.7.1 file geodatabase. The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total and five individual feature classes. SLIDO-4.4 includes 55,736 landslide polygons in the Deposits feature class dataset and 14,985 historic landslide points locations compiled from 365 studies. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.1.

  7. O

    Statewide Landslide Information Database for Oregon (SLIDO)

    • data.oregon.gov
    • catalog.data.gov
    • +1more
    csv, xlsx, xml
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Statewide Landslide Information Database for Oregon (SLIDO) [Dataset]. https://data.oregon.gov/dataset/Statewide-Landslide-Information-Database-for-Orego/4uex-6dq6
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jan 29, 2025
    Area covered
    Oregon
    Description

    SLIDO-4.5 is an Esri ArcGIS version 10.7 file geodatabase which can be downloaded here: https://www.oregon.gov/dogami/slido/Pages/data.aspx The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total, as well as two raster data sets, one individual table, and two individual feature classes. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.5.

  8. O

    Detailed Susceptibility Map Index

    • data.oregon.gov
    • catalog.data.gov
    csv, xlsx, xml
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Detailed Susceptibility Map Index [Dataset]. https://data.oregon.gov/widgets/nytx-juxc?mobile_redirect=true
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Jan 29, 2025
    Description

    SLIDO-4.5 is an Esri ArcGIS version 10.7 file geodatabase which can be downloaded here: https://www.oregon.gov/dogami/slido/Pages/data.aspx The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total, as well as two raster data sets, one individual table, and two individual feature classes. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.5.

  9. O

    Scarp Flanks

    • data.oregon.gov
    • datasets.ai
    • +2more
    csv, xlsx, xml
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Scarp Flanks [Dataset]. https://data.oregon.gov/dataset/Scarp-Flanks/jh5f-jfb6
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jan 29, 2025
    Description

    SLIDO-4.5 is an Esri ArcGIS version 10.7 file geodatabase which can be downloaded here: https://www.oregon.gov/dogami/slido/Pages/data.aspx The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total, as well as two raster data sets, one individual table, and two individual feature classes. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.5.

  10. Sinks

    • oregonwaterdata.org
    • dangermondpreserve-tnc.hub.arcgis.com
    • +2more
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Sinks [Dataset]. https://www.oregonwaterdata.org/maps/esri::sinks-2
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  11. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • pacificgeoportal.com
    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  12. m

    Open Space - Level of Protection

    • gis.data.mass.gov
    • gis-cccommission.opendata.arcgis.com
    Updated Sep 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cape Cod Commission (2014). Open Space - Level of Protection [Dataset]. https://gis.data.mass.gov/maps/CCCommission::open-space-level-of-protection/explore
    Explore at:
    Dataset updated
    Sep 17, 2014
    Dataset authored and provided by
    Cape Cod Commission
    Area covered
    Description

    The MassGIS Protected and Recreational OpenSpace data comprise a set of related data layers that represent parklands, forests, golf courses, playgrounds, wildlife sanctuaries, conservation lands, water supply areas, cemeteries, school ball fields, and other open land that may be classified as protected and/or recreational in use. Not all lands in this layer are protected in perpetuity, though nearly all have at least some level of protection. The layer includes lands owned by the state, cities and towns, federal agencies, and private and non-profit entities. The following types of land are included in this polygon datalayer: - conservation land - habitat protection with minimal recreation, such as walking trails - recreation land - outdoor facilities such as town parks, commons, playing fields, school fields, golf courses, bike paths, scout camps, and fish and game clubs. These may be privately or publicly owned facilities. - town forests - parkways - green buffers along roads, if they are a recognized conservation resource - agricultural land - land protected under an Agricultural Preservation Restriction (APR) and administered by the state Department of Agricultural Resources (DAR, formerly the Dept. of Food and Agriculture (DFA)) - aquifer protection land - not zoning overlay districts - watershed protection land - not zoning overlay districts - cemeteries - if a recognized conservation or recreation resource - forest land -- if designated as a Forest Legacy Area The OpenSpace layer includes two feature classes: * OPENSPACE_POLY - polygons of recreational and conservation lands as described above * OPENSPACE_ARC - attributed lines that represent boundaries of the polygons These feature classes are stored in a feature dataset named OPENSPACE that includes ArcGIS geodatabase topology.

  13. NorWeST Observed Stream Temperature Points (Feature Layer)

    • s.cnmilf.com
    • healthdata.gov
    • +6more
    Updated Sep 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). NorWeST Observed Stream Temperature Points (Feature Layer) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/norwest-observed-stream-temperature-points-feature-layer-496dd
    Explore at:
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    This layer indicates the _location of the observed stream temperature records used for the NorWeST database summaries. NorWeST summer stream temperature scenarios were developed for all rivers and streams in the western U.S. from the greater than 20,000 stream sites in the NorWeST database where mean August stream temperatures were recorded. The resulting dataset includes stream lines (NorWeST_PredictedStreams) and associated mid-points NorWest_TemperaturePoints) representing 1 kilometer intervals along the stream network. Stream lines were derived from the 1:100,000 scale NHDPlus dataset (USEPA and USGS 2010; McKay et al. 2012). Shapefile extents correspond to NorWeST processing units, which generally relate to 6 digit (3rd code) hydrologic unit codes (HUCs) or in some instances closely correspond to state borders. The line and point shapefiles contain identical modeled stream temperature results. The two feature classes are meant to complement one another for use in different applications. In addition, spatial and temporal covariates used to generate the modeled temperatures are included in the attribute tables at https://www.fs.usda.gov/rm/boise/AWAE/projects/NorWeST/ModeledStreamTemperatureScenarioMaps.shtml. The NorWeST NHDPlusV1 processing units include: Salmon, Clearwater, Spokoot, Missouri Headwaters, Snake-Bear, MidSnake, MidColumbia, Oregon Coast, South-Central Oregon, Upper Columbia-Yakima, Washington Coast, Upper Yellowstone-Bighorn, Upper Missouri-Marias, and Upper Green-North Platte. The NorWeST NHDPlusV2 processing units include: Lahontan Basin, Northern California-Coastal Klamath, Utah, Coastal California, Central California, Colorado, New Mexico, Arizona, and Black Hills.

  14. Median Type TDA

    • gis-fdot.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Jul 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2017). Median Type TDA [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/median-type-tda
    Explore at:
    Dataset updated
    Jul 20, 2017
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    The FDOT GIS Roads with Median Types feature class provides spatial information on Florida Median Types distinguishing between lawn, paved, painted, and curbed medians. It also notes where a fence, guardrail, or barrier wall divides the two sides of a divided road. A median is defined as a barrier or other physical separation between two lanes of traffic traveling in opposite directions, which can either be raised, painted, or paved. This information is required for all functionally classified roadways On or Off the SHS. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 11/08/2025.For more details please review the FDOT RCI Handbook Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/median_type.zip

  15. g

    Wyoming Oil and Gas Conservation Commission (WOGCC) - Active Wells

    • data.geospatialhub.org
    • newgeohub-uwyo.opendata.arcgis.com
    • +2more
    Updated Aug 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGeoHub (2017). Wyoming Oil and Gas Conservation Commission (WOGCC) - Active Wells [Dataset]. https://data.geospatialhub.org/datasets/46d3629e4e3b4ef6978cb5e6598f97bb
    Explore at:
    Dataset updated
    Aug 17, 2017
    Dataset authored and provided by
    WyomingGeoHub
    Area covered
    Description

    WOGCC Current Active Well Data.The Wyoming Oil and Gas Conservation Commission (WOGCC) provides users with the ability to download statewide well data in excel format.This dataset was derived by (WyGISC internal process steps) downloading the wells header file located in Down Load menu at the following site http://wogcc.state.wy.us/ (click on Down Load). Select the file at the bottom of the dropdown list (i.e. "date Well Header DB5 (Zipped)" ). Then click the bucking bronco to the left of the dropdown list.In order to convert these data to spatial data, create two new feature classes from the two excel tables using geographic NAD27 coordinate system. Load points into one of the two feature classes, name it All. Remove all points outside of Wyoming. Reproject this layer. Reassociate layer file if you have one, or create a new one. All well codes for symbolization can be found at http://wogcc.state.wy.us/codes.htmlPurpose: Provides data that can be used in tabular form by the end user, or converted to spatial data.WOGCC also provides access to an online map server: http://wogccms.state.wy.us/, which can also be ingested in GIS via an ArcIMS connection.

  16. v

    VT Data - Village Boundaries

    • geodata.vermont.gov
    • sov-vcgi.opendata.arcgis.com
    • +2more
    Updated Jun 17, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2003). VT Data - Village Boundaries [Dataset]. https://geodata.vermont.gov/datasets/vt-data-village-boundaries-1/about
    Explore at:
    Dataset updated
    Jun 17, 2003
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    (Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.

  17. NorWeST Stream Temperatures 2040s (Feature Layer)

    • healthdata.gov
    • agdatacommons.nal.usda.gov
    • +6more
    csv, xlsx, xml
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    usda.gov (2024). NorWeST Stream Temperatures 2040s (Feature Layer) [Dataset]. https://healthdata.gov/USDA/NorWeST-Stream-Temperatures-2040s-Feature-Layer-/9g67-fa9w
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Description

    This layer represents modeled stream temperatures derived from the NorWeST point feature class (NorWest_TemperaturePoints). NorWeST summer stream temperature scenarios were developed for all rivers and streams in the western U.S. from the > 20,000 stream sites in the NorWeST database where mean August stream temperatures were recorded. The resulting dataset includes stream lines (NorWeST_PredictedStreams) and associated mid-points NorWest_TemperaturePoints) representing 1 kilometer intervals along the stream network. Stream lines were derived from the 1:100,000 scale NHDPlus dataset (USEPA and USGS 2010; McKay et al. 2012). Shapefile extents correspond to NorWeST processing units, which generally relate to 6 digit (3rd code) hydrologic unit codes (HUCs) or in some instances closely correspond to state borders. The line and point shapefiles contain identical modeled stream temperature results. The two feature classes are meant to complement one another for use in different applications. In addition, spatial and temporal covariates used to generate the modeled temperatures are included in the attribute tables at https://www.fs.usda.gov/rm/boise/AWAE/projects/NorWeST/ModeledStreamTemperatureScenarioMaps.shtml. The NorWeST NHDPlusV1 processing units include: Salmon, Clearwater, Spokoot, Missouri Headwaters, Snake-Bear, MidSnake, MidColumbia, Oregon Coast, South-Central Oregon, Upper Columbia-Yakima, Washington Coast, Upper Yellowstone-Bighorn, Upper Missouri-Marias, and Upper Green-North Platte. The NorWeST NHDPlusV2 processing units include: Lahontan Basin, Northern California-Coastal Klamath, Utah, Coastal California, Central California, Colorado, New Mexico, Arizona, and Black Hills.

  18. l

    LARIAC5 BUILDINGS 2017

    • geohub.lacity.org
    • data.lacounty.gov
    • +3more
    Updated Apr 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). LARIAC5 BUILDINGS 2017 [Dataset]. https://geohub.lacity.org/datasets/lacounty::lariac5-buildings-2017
    Explore at:
    Dataset updated
    Apr 28, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    ** Download as File GeodatabaseThe Countywide building outline dataset contains building outlines (over 3,000,000) for all buildings in Los Angeles County, including building height, and building area (also known as building footprints). This data was captured from stereo imagery as part of the LARIAC2 Project (2008 acquisition) and was updated as part of the LARIAC4 (2014) & LARIAC5 (2017) imagery acquisition.Most of the buildings in this dataset were generated using stereo imagery. This means that the person capturing the buildings actually saw them in 3-D, and therefore was able to more accurately capture the location of the roof line, since this method eliminated the impacts of building lean (where the height of the building impacts its apparent location). Basically this is the most accurate method for capturing building outlines. In many cases the location is more accurate than our aerial photography and parcel boundaries.This file contains a file geodatabase which has two feature classes:LARIAC5_BUILDINGS_2017 – this is the current set of buildings as of 2017LARIAC4_BUILDINGS_DELETED_2017 – these are the buildings from LARIAC4 that have been modified or deleted. These can be for change analysis and detection.

  19. Range Unit Pasture

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +5more
    bin
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Range Unit Pasture [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Range_Unit_Pasture/29123231
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pasture is a feature class in the Rangeland Management data set. It represents the area boundaries of livestock grazing pastures. The area corresponds to tabular data in the RIMS (Rangeland Information Management System).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

  20. s

    Structures

    • opendata.starkcountyohio.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stark County Ohio (2024). Structures [Dataset]. https://opendata.starkcountyohio.gov/datasets/structures
    Explore at:
    Dataset updated
    Mar 20, 2024
    Dataset authored and provided by
    Stark County Ohio
    Area covered
    Description

    A combination of stormwater system data throughout Stark County, Ohio. The data is combined using an ETL via the data interoperability extension for ArcGIS Pro. Each weekend, the ETL is automatically ran via Python/Windows Task Scheduler to update the data with any changes from the past week from each of the source datasets. The source data is stored in ArcGIS SDE databases that Stark County GIS (SCGIS) provides for departments, cities, villages, and townships within the county. SCGIS currently maintains SDE databases for Canton, Alliance, Louisville, North Canton, Beach City, Easton Canton, Minerva, Meyers Lake, Stark County Engineer (SCE), and each of the townships. In addition to those datasets (which are updated weekly), this layer also includes data from the cities of Massillon and Canal Fulton, which are not stored in databases maintained by SCGIS. Data for those two cities is updated separately as new iterations become available.As this layer encompasses the entire county, source feature classes are consolidated into 4 layers to improve performance on ArcGIS Online. Discharge points are the point at which water exits part of the stormwater system, such as the outlet of a pipe or ditch. It includes outfalls defined under NPDES Phase II. Structures includes both inlets (catch basins, yard drains, etc.) and manholes. Pipes includes storm sewers, as well as culverts (pipes in which both ends are daylit). Finally, the ditches layer includes roadside ditches, as well as off-road ditches in some areas/instances.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Fish and Wildlife Service (2025). Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes [Dataset]. https://catalog.data.gov/dataset/charles-m-russell-national-wildlife-refuge-fire-history-gis-feature-classes
Organization logo

Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes

Explore at:
Dataset updated
Nov 25, 2025
Dataset provided by
U.S. Fish and Wildlife Servicehttp://www.fws.gov/
Description

Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.

Search
Clear search
Close search
Google apps
Main menu