This is a video demonstrating how to connect Survey123 for ArcGIS to an external GNSS receiver.Steps:Connect your mobile device to the external GNSS receiver using bluetooth.Once the connection is successful, open an ArcGIS mobile app for field data collection (e.g., Survey123 for ArcGIS).Go to Settings, and look for Location setting.Click "Add Provider" and choose "External receiver".Once your external GNSS receiver is detected, press it and wait until the app establishes the connection.Author: Esri Indonesia Solution Strategist TeamCopyright © 2020 Esri Indonesia. All rights reserved.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
This is a video demonstrating how to connect Collector for ArcGIS to an external GNSS receiver.Steps:Connect your mobile device to the external GNSS receiver using bluetooth.Once the connection is successful, open an ArcGIS mobile app for field data collection (e.g., Collector for ArcGIS).Go to Settings, and look for Location setting.Press "Provider", click the add ("+") button, and choose the appropriate external GNSS receiver.You can specify the antenna height, if applicable, and then press "Done".The Collector for ArcGIS can now be used to collect field data by utilising the connected external GNSS receiver.Credits: Anatum GeoMobile Solutions
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
The State of Delaware Enterprise GIS (FirstMap) system serves as a centralized repository for commonly used GIS data layers including, but not limited to, the framework layers used in base maps and aerial imagery. The repository supports inter-agency data sharing, facilitates data collection and updates, and through automated replication simplifies the process to find the most recent authoritative geospatial data for the state.
The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
This packaged data collection contains two sets of two additional model runs that used the same inputs and parameters as our primary model, with the exception being we implemented a "maximum corridor length" constraint that allowed us to identify and visualize the corridors as being well-connected (≤15km) or moderately connected (≤45km). This is based on an assumption that corridors longer than 45km are too long to sufficiently accommodate dispersal. One of these sets is based on a maximum corridor length that uses Euclidean (straight-line) distance, while the other set is based on a maximum corridor length that uses cost-weighted distance. These two sets of corridors can be compared against the full set of corridors from our primary model to identify the remaining corridors, which could be considered poorly connected. This package includes the following data layers: Corridors classified as well connected (≤15km) based on Cost-weighted Distance Corridors classified as moderately connected (≤45km) based on Cost-weighted Distance Corridors classified as well connected (≤15km) based on Euclidean Distance Corridors classified as moderately connected (≤45km) based on Euclidean Distance Please refer to the embedded metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in raster GeoTIFF (.tif) format.
This layer contains hydrography such as streams, rivers, and other linear hydrography features. Hidden hydrography, inferred drainage connectors, or culverts connect visible hydrography to form a continuous network. These connectors or hidden features maintain a predictable direction connecting the 2 points that conceal or infer the feature. Streams: Captured as single line if less than two meters wide. Both water edges plotted if wider than two meters. Docks and Piers: Visible outline delineated. Jetty: Visible outline delineated. Seawall: Single line plotted at the face of the seawall. Hidden Hydrography: Hidden hydrography is not obvious, even to someone standing under a bridge for example; it cannot be seen photogrammetrically and can be captured only from other sources. Segments of rivers, streams, and canals that flow under features such as bridges and roads are captured as continuous portions of the river, stream, or canal.
The way to access Layers Quickly.
Quick Layers is an Add-In for ArcMap 10.6+ that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 1.164
To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers) using GDRS Manager.
Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.
Installation:
After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
1. Open ArcMap
2. Customize -> Add-In Manager… -> Options
3. Click add folder, and enter the location of the Quick Layers app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers
4. After you do this, the Quick Layers toolbar will be available. To add it, go to Customize -> Toolbars and select DNR Quick Layers 10
The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.
ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Picnic Table dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.
The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium
This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.
Reporter for MRGPThe Reporter for MRGP doesn't require you to download any apps to complete an inventory; all you need is an internet connection and web browser. The Reporter includes culverts and bridges from VTCULVERTS, town highways from Vtrans and the current status of the MRGP segments and outlets on the map.MRGP Fieldworker SolutionNotes on MRGP fieldworker solution: July 12, 2021. The MRGP map now displays the current status of road segments and outlets. Fieldworkers using the MRGP solution should remove the offline map area(s) from their device, and keep their new offline map current, by syncing their map. Enabling auto-sync will get you the current segment or outlet status automatically. See FAQ section below for more information. Road Erosion Inventory forms are available and have a new look and feel this year. The drainage ditch survey is broken out into three pages for a better user experience. The first page contains survey and segment information, the second; the inventory, and the third; barriers to implementation. You will notice the questions are outlined by section so it’s easier to follow along too. The questions have remained the same. Survey123 has a new option requiring users to update surveys on their mobile device. That option has been enabled for the two MRGP Survey123 forms. Step 1: Download the free mobile appsFor fieldworkers to collect and submit data to VT DEC, two free apps are required: ArcGIS Collector or Field Maps and Survey123. ArcGIS Collector or Field Maps is used first to locate the segment or outlet for inventory, and Survey123, for completing the Road Erosion Inventory. ArcGIS Field Maps is ESRI’s new all-in-one app for field work and will replace ArcGIS Collector. You can download ArcGIS Collector or ArcGIS Fields Maps and Survey123 from the Google Play Store.You can download ArcGIS Collector or ArcGIS Field Maps and Survey123 from Apple Store.
Step 2: Sign into the mobile appYou will need appropriate credentials to access fieldworker solution, please contact your Regional Planning Commission’s Transportation Planner or Jim Ryan (MRGP Program Lead) at (802) 490-6140.Open Collector for ArcGIS, select ‘ArcGIS Online’ as shown below, and enter the user name and password. The credential is saved unless you sign out. Step 3: Open the MRGP Mobile MapIf you’re working in an area that has a reliable data connection (e.g. LTE or 4G), open the map below by selecting it.Step 4: Select a road segment or outlet for inventoryUse your location, button circled in red below, select the segment or outlet you need to inventory, and select 'Update Road Segment Status' from the pop-up to launch Survey123.
Step 5: Complete the Road Erosion Inventory and submit inventory to DECSelecting 'Update Road Segment Status' opens Survey123, downloads the relevant survey and pre-populates the REI with important information for reporting to DEC. You will have to enter the same username and password to access the REI forms. The credential is saved unless you sign out of Survey123.Complete the survey using the appropriate supplement below and submit the assessment directly to VT DEC.Paved Roads with Catch Basin SupplementPaved and Gravel Roads with Drainage Ditches Supplement
Step 6: Repeat!Go back to the ArcGIS Collector or Field Maps and select the next segment for inventory and repeat steps 1-5.
If you have question related to inventory protocol reach out to Jim Ryan, MRGP Program Lead, at jim.ryan@vermont.gov, (802) 490-6140If you have questions about implementing the mobile data collection piece please contact Ryan Knox, ADS-ANR IT, at ryan.knox@vermont.gov, (802) 793-0297
The location where I'm doing inventory does not have a data coverage (LTE or 4G). What can I do?ArcGIS Collector allows you take map areas offline when you think there will be spotty or no data coverage. I made a video to demonstrate the steps for taking map areas offline - https://youtu.be/OEsJrCVT8BISurvey123 operates offline by default but you need to download the survey. My recommendation is to test the fieldworker solution (Steps 1-5) before you go into the field but don't submit the test survey.Where can I download the Road Erosion Scoring shown on the the Atlas? You can download the scoring for both outlets and road segments through the VT Open Geodata Portal.https://geodata.vermont.gov/maps/VTANR::mrgp-scoring-open-data/aboutHow do I use my own ArcGIS Collector map for launching the official MRGP REI survey form? You can use the following custom url for launching Survey123, open the REI and prepopulate answers in the form. More information is here. TIP: add what's below directly in the HTML view of the popup not the link as described in the post I provided.
Hydrologically connected
segments (lines):Update Road Segment Status
Segment ID: {SegmentID}
Segment Status: {SegmentStatus}
{RoadName}, {Municipality}
Outlets: {Outlets}
Hydrologically
connected outlets (points):Update Outlet Status
Outlet ID: {OutletID}
Municipality: {Municipality}
Erosion: {ErosionValue}
How do I save my name and organization information used in subsequent surveys? Watch this short video or execute the steps below:
Open Survey123 and open a blank REI form (Collect button) Note: it's important to open a blank form so you don't save the same segment id for all your surveys Fill-in your 'Name' and 'Organization' and clear the 'Date of Assessment field' (x button). Using the favorites menu in the top-right corner you can use the current state of your survey to 'Set as favorite answers.' Close survey and 'Save this survey in Drafts.' Use Collector to launch survey from selected feature (segment or outlet). Using the favorites menu again, 'Paste answers from favorite.
What if the map doesn't have the outlet or road segment I need to inventory for the MRGP? Go Directly to Survey123 and complete the appropriate Road Erosion Inventory and submit the data to DEC. The survey includes a Geopoint (location) that we can use to determine where you completed the inventory.
Where can I view the Road Erosion Inventories completed with Survey123? Using the MRGP credentials you have access to another map that shows completed REIs.Web map - Completed Road Erosion Inventories for MRGPWhere can I download the 2020-2021 data collected with Survey123?Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f8a11de8a5a0469596ef11429ab49465Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=ae13a925a662490184d5c5b1b9621672Where can I download the 2019 data collected with Survey123?
Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f60050c6f3c04c60b053470483acb5b1 Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=753006f9ecf144ccac8ce37772bb2c03 Where can I download the 2018 data collected with Survey123?Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=124b617d142e4a1dbcfb78a00e8b9bc5Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=8abcc0fcec0441ce8ae6cd38e3812b1b Where can I download the Hydrologically Connected Road Segments and Outlets?Vermont Open Data Geoportal - https://geodata.vermont.gov/datasets/VTANR::hydrologically-connected-road-segments-1/about
This 2019 version of the MRGP Outlets is based on professional mapping completed using DEC's Stormwater Infrastructure dataset. In catch basin systems, work was completed to match outlets to road segments that drain to them. The outlets here correspond to Outlet IDs identified in the Hydrologically connected roads segments layer. For outlets that meet standard, road segments will also meet the standard for MRGP compliance.
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
TRCA GIS Open data on ArcGIS online. This link will take you to an external site URL: https://trca-camaps.opendata.arcgis.com/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly extracts of historic Traffic Data at Signalised derived by SCATS.
SCATS (Sydney Coordinated Adaptive Traffic System) is an intelligent transportation system that manages the dynamic timing of signal phases at traffic signals in real time. The system estimates the number of vehicles passing through the intersection and other information related to traffic signal timing. There is no guarantee this data is accurate or was used to make internal decisions in SCATS.
The data is provided by controller site. Each site has its own parquet file for the month, which contains SCATS data produced by that site. The files use the LM site number format (e.g. – Site 1 is LM00001).
Note that you are accessing the data provided by the links below pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes and may have errors.
Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material:- “The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability.”
A data dictionary is provided at the document link.
Monthly data extracts are in parquet format.
The locations of the traffic signals are found at the link below.
https://portal-mainroads.opendata.arcgis.com/datasets/traffic-signal-sitesAvailable in JSON format below.gisservices.mainroads.wa.gov.au/arcgis/rest/services/Connect/MapServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pjson
The mapping of the detectors to the strategic approaches at an intersection is given at the link below.
https://mainroadsopendata.mainroads.wa.gov.au/swagger/ui/index#/LmSaDetector
Further information, including SCATS graphics, is available via the Traffic Signal information on Main Roads TrafficMap
trafficmap - Main Roads WA
Survey123 Connect (Template)
This template contains functionality that matches version 2.8 of Survey123.
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Gardens dataset.
This is a video demonstrating how to connect Survey123 for ArcGIS to an external GNSS receiver.Steps:Connect your mobile device to the external GNSS receiver using bluetooth.Once the connection is successful, open an ArcGIS mobile app for field data collection (e.g., Survey123 for ArcGIS).Go to Settings, and look for Location setting.Click "Add Provider" and choose "External receiver".Once your external GNSS receiver is detected, press it and wait until the app establishes the connection.Author: Esri Indonesia Solution Strategist TeamCopyright © 2020 Esri Indonesia. All rights reserved.