https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Consulting Service market is expected to reach 1637 million by 2023, growing at a CAGR of 15% during the forecast period. Geospatial data analytics, predictive modeling, and situational awareness are key drivers of the market growth. The rising adoption of GIS in various industries, such as transportation, agriculture, energy, and government, is contributing to the market's expansion. The market is segmented based on type, application, and region. By type, the market is divided into custom mapping services, GIS mapping software development, and others. The custom mapping services segment is expected to hold the largest share of the market due to the increasing demand for customized maps for specific purposes. By application, the market is segmented into transportation, agriculture, energy, and others. The transportation segment is expected to witness the highest growth rate due to the growing use of GIS in traffic management, route optimization, and logistics. By region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. North America is expected to hold the largest share of the market due to the presence of key players and the early adoption of GIS technology. Asia Pacific is expected to experience the highest growth rate due to the increasing infrastructure development and urbanization in the region.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.
505 Economics is comprised of doctoral and post-doctoral researchers based at the London School of Economics. We blend together experience in data science, GIS, artificial intelligence and economics.
Our department at LSE is ranked number 1 in Economic Geography in the world.
Get in touch to discuss how we can help you with your geospatial and economics projects.
We have previously: Created sub-national GDP measures using high resolution satellite imagery and deep learning for EU regions Created sub-national economic data for conflict zones using alternative data Extracted geographic features for African countries (e.g. POI, road network data) Created Computable general equilibrium (CGE) models
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
https://www.beaconbid.com/index-licensehttps://www.beaconbid.com/index-license
Walworth County is seeking bids for GIS Professional Consulting Services due 2024-09-09T05:00:00.000Z
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach a market size of $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.6% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of cloud-based GIS solutions offers scalability and cost-effectiveness, attracting both large enterprises and smaller organizations. Furthermore, the rising demand for location intelligence across various sectors, including urban planning, environmental management, and logistics, significantly drives market growth. Advancements in data analytics techniques, such as machine learning and artificial intelligence, are enhancing the capabilities of GIS analytics, leading to more accurate predictions and insightful decision-making. The integration of GIS with other technologies, like IoT and Big Data, further amplifies its value proposition across diverse applications. Competitive pressures among established players like ESRI, Hexagon, Pitney Bowes, SuperMap, Bentley Systems, GE, GeoStar, and Zondy Cyber Group are driving innovation and fostering market expansion. However, market growth might face certain challenges. The complexity of GIS analytics software and the need for specialized expertise can hinder widespread adoption, particularly among smaller businesses with limited resources. Data security and privacy concerns related to handling sensitive location data also pose a significant restraint. Despite these challenges, the long-term outlook remains positive, driven by continuous technological innovation, increasing data availability, and growing awareness of the strategic value of location intelligence across various industries. The market's segmentation, while not explicitly provided, can reasonably be assumed to include software, services, and hardware components, further contributing to its multifaceted growth trajectory.
Attachment regarding request by Jeff Foster, P.E. on behalf of Zadell Development, LLC for subdivision First Plat review and approval of Anfield Estates, consisting of 11 lots on 24.7 acres, located off Beaver Creek Road (SR-1008), parcel 5491 in Cape Fear Township.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Analytics market size is projected to grow remarkably from $9.1 billion in 2023 to $21.7 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This substantial growth can be attributed to several factors such as technological advancements in GIS, increasing adoption in various industry verticals, and the rising importance of spatial data for decision-making processes.
The primary growth driver for the GIS Analytics market is the increasing need for accurate and efficient spatial data analysis to support critical decision-making processes across various industries. Governments and private sectors are investing heavily in GIS technology to enhance urban planning, disaster management, and resource allocation. With the world becoming more data-driven, the reliance on GIS for geospatial data has surged, further propelling its market growth. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) with GIS is revolutionizing the analytics capabilities, offering deeper insights and predictive analytics.
Another significant growth factor is the expanding application of GIS analytics in disaster management and emergency response. Natural disasters such as hurricanes, earthquakes, and wildfires have highlighted the importance of GIS in disaster preparedness, response, and recovery. The ability to analyze spatial data in real-time allows for quicker and more efficient allocation of resources, thus minimizing the impact of disasters. Moreover, GIS analytics plays a pivotal role in climate change studies, helping scientists and policymakers understand and mitigate the adverse effects of climate change.
The transportation sector is also a major contributor to the growth of the GIS Analytics market. With the rapid urbanization and increasing traffic congestion in cities, there is a growing demand for effective transport management solutions. GIS analytics helps in route optimization, traffic management, and infrastructure development, thereby enhancing the overall efficiency of transportation systems. The integration of GIS with Internet of Things (IoT) devices and sensors is further enhancing the capabilities of traffic management systems, contributing to the market growth.
Regionally, North America is the largest market for GIS analytics, driven by the high adoption rate of advanced technologies and significant investment in geospatial infrastructure by both public and private sectors. The Asia Pacific region is expected to witness the highest growth rate during the forecast period due to the rapid urbanization, infrastructural developments, and increasing government initiatives for smart city projects. Europe and Latin America are also contributing significantly to the market growth owing to the increasing use of GIS in urban planning and environmental monitoring.
The GIS Analytics market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the continuous advancements in GIS software solutions that offer enhanced functionalities such as data visualization, spatial analysis, and predictive modeling. The increasing adoption of cloud-based GIS software solutions, which offer scalable and cost-effective options, is further driving the growth of this segment. Additionally, open-source GIS software is gaining popularity, providing more accessible and customizable options for users.
The hardware segment includes GIS data collection devices such as GPS units, remote sensing instruments, and other data acquisition tools. This segment is witnessing steady growth due to the increasing demand for high-precision GIS data collection equipment. Technological advancements in hardware, such as the development of LiDAR and drones for spatial data collection, are significantly enhancing the capabilities of GIS analytics. Additionally, the integration of mobile GIS devices is facilitating real-time data collection, contributing to the growth of the hardware segment.
The services segment encompasses consulting, implementation, training, and maintenance services. This segment is expected to grow at a significant pace due to the increasing demand for professional services to manage and optimize GIS systems. Organizations are seeking expert consultants to help them leverage GIS analytics for strategic decision-making and operational efficiency. Additionally, the growing complexity o
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
How is this GIS In Telecom Sector Industry segmented?
The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.
GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
Geodatabase is updated weekly, on Sunday evenings with an ETL script "JoinstoGDB_OverwriteAGOL.py". Script written by Esri Technical Consultant, Richard L'Esperance, 2021.This file geodatabase contains two feature classes: Lucas_Parcels_CAMA (polygon): information from .dbo.OHLUC_CAMA table joined to CADASTRE dataset's Parcels geometry. Table created by LCIS expressly for this purpose with CAMA data from LEGDAT, OWNDAT, and PARDAT tables.Lucas Sales (point): CAMA data from PARDAT and SALES tables.DO NOT DELETE THIS FILE GEODATABASE!!!
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
Based on Town ID, this dataset only displays the data for the 7 towns within Dukes County MAAquinnah = 104Chilmark = 62Edgartown = 89Gosnold = 109Oak Bluffs = 221Tisbury = 296West Tisbury = 327Data are compiled by the Town's parcel data consultant. As of FY24, all towns are using Cartographic Technologies. Data are provided to MassGIS and hosted by them in ArcGIS OnLine. Data comply to the MassGIS Level 3 parcel data standard. Data are updated about once per year. The extract of assessing info is static & done at the time the data are compiled by the consultant. For more current assessing info, visit the town's respective online assessing map.
description: Libraries dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.; abstract: Libraries dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
These boundaries are for planning purposes only and are not survey grade. For the most up-to-date assessing info, please contact the Town's Assessor. The respective Fiscal Year of publication is provided in the parcel pop-up info window. Years may vary from town to town.The parcels from each town on Martha's Vineyard are included in this web map. The map must be zoomed in far enough before the parcels will display on the map. The data are served out from MassGIS. All parcel data comply with the MassGIS Level 3 Parcel Data Standard.Each Town in Dukes County hires their own parcel data consultant to maintain their GIS parcel file. In most cases, this is done once a year. At the time of data compilation, the town Assessor exports a standard info file from their database which gets associated with each digital parcel. The Town's consultant pulls the parcel bounds and assessing info table into a spatial geodatabase which is then forwarded to MassGIS. MassGIS completes a few additional data management tasks and then serves out the data through their ArcGIS OnLine organizational website.The Martha's Vineyard Commission (MVC) then pulls that parcel data feature class into this web map and sets a few things such as visibility zoom extents and how the data display in the pop-up. The MVC does not edit these data in any way.Building Info Note: If there are multiple buildings on a parcel, the building info provided is only for one building on the parcel. Which building (i.e. largest, smallest, newest, oldest) is unknown. Parcels with Multiple Owners (i.e. Condo): If there are multiple owners on one parcel, when clicking on the pop-up you'll see the option to cycle through several records worth of assessing info.Understanding the Attributes: See the MassGIS Level 3 Parcel Data website for details.
description: Building Footprints dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.; abstract: Building Footprints dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on February 26-28, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.
Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.
description: Schools K-12 dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.; abstract: Schools K-12 dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global GIS Consulting Service market is expected to reach 1637 million by 2023, growing at a CAGR of 15% during the forecast period. Geospatial data analytics, predictive modeling, and situational awareness are key drivers of the market growth. The rising adoption of GIS in various industries, such as transportation, agriculture, energy, and government, is contributing to the market's expansion. The market is segmented based on type, application, and region. By type, the market is divided into custom mapping services, GIS mapping software development, and others. The custom mapping services segment is expected to hold the largest share of the market due to the increasing demand for customized maps for specific purposes. By application, the market is segmented into transportation, agriculture, energy, and others. The transportation segment is expected to witness the highest growth rate due to the growing use of GIS in traffic management, route optimization, and logistics. By region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. North America is expected to hold the largest share of the market due to the presence of key players and the early adoption of GIS technology. Asia Pacific is expected to experience the highest growth rate due to the increasing infrastructure development and urbanization in the region.