100+ datasets found
  1. a

    02.1 Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
    Explore at:
    Dataset updated
    Feb 16, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

  2. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  3. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  4. Getting to Know ArcGIS Pro 2.6

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Getting to Know ArcGIS Pro 2.6 [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/getting-to-know-arcgis-pro-2-6
    Explore at:
    Dataset updated
    Aug 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Continuing the tradition of the best-selling Getting to Know series, Getting to Know ArcGIS Pro 2.6 teaches new and existing GIS users how to get started solving problems using ArcGIS Pro. Using ArcGIS Pro for these tasks allows you to understand complex data with the leading GIS software that many businesses and organizations use every day.Getting to Know ArcGIS Pro 2.6 introduces the basic tools and capabilities of ArcGIS Pro through practical project workflows that demonstrate best practices for productivity. Explore spatial relationships, building a geodatabase, 3D GIS, project presentation, and more. Learn how to navigate ArcGIS Pro and ArcGIS Online by visualizing, querying, creating, editing, analyzing, and presenting geospatial data in both 2D and 3D environments. Using figures to show each step, Getting to Know ArcGIS Pro 2.6 demystifies complicated process like developing a geoprocessing model, using Python to write a script tool, and the creation of space-time cubes. Cartographic techniques for both web and physical maps are included.Each chapter begins with a prompt using a real-world scenario in a different industry to help you explore how ArcGIS Pro can be applied for operational efficiency, analysis, and problem solving. A summary and glossary terms at the end of every chapter help reinforce the lessons and skills learned.Ideal for students, self-learners, and seasoned professionals looking to learn a new GIS product, Getting to Know ArcGIS Pro 2.6 is a broad textbook and desk reference designed to leave users feeling confident in using ArcGIS Pro on their own.AUDIENCEProfessional and scholarly. Higher education.AUTHOR BIOMichael Law is a cartographer and GIS professional with more than a decade of experience. He was a cartographer for Esri, where he developed cartography for books, edited and tested GIS workbooks, and was the editor of the Esri Map Book. He continues to work with GIS software, writing technical documentation, teaching training courses, and designing and optimizing user interfaces.Amy Collins is a writer and editor who has worked with GIS for over 16 years. She was a technical editor for Esri, where she honed her GIS skills and cultivated an interest in designing effective instructional materials. She continues to develop books on GIS education, among other projects.Pub Date: Print: 10/6/2020 Digital: 8/18/2020 ISBN: Print: 9781589486355 Digital: 9781589486362 Price: Print: $84.99 USD Digital: $84.99 USD Pages: 420 Trim: 7.5 x 9.25 in.Table of ContentsPrefaceChapter 1 Introducing GISExercise 1a: Explore ArcGIS OnlineChapter 2 A first look at ArcGIS Pro Exercise 2a: Learn some basics Exercise 2b: Go beyond the basics Exercise 2c: Experience 3D GISChapter 3 Exploring geospatial relationshipsExercise 3a: Extract part of a dataset Exercise 3b: Incorporate tabular data Exercise 3c: Calculate data statistics Exercise 3d: Connect spatial datasetsChapter 4 Creating and editing spatial data Exercise 4a: Build a geodatabase Exercise 4b: Create features Exercise 4c: Modify featuresChapter 5 Facilitating workflows Exercise 5a: Manage a repeatable workflow using tasks Exercise 5b: Create a geoprocessing model Exercise 5c: Run a Python command and script toolChapter 6 Collaborative mapping Exercise 6a: Prepare a database for data collection Exercise 6b: Prepare a map for data collection Exercise 6c: Collect data using ArcGIS CollectorChapter 7 Geoenabling your projectExercise 7a: Prepare project data Exercise 7b: Geocode location data Exercise 7c: Use geoprocessing tools to analyze vector dataChapter 8 Analyzing spatial and temporal patternsExercise 8a: Create a kernel density map Exercise 8b: Perform a hot spot analysis Exercise 8c: Explore the results in 3D Exercise 8d: Animate the dataChapter 9 Determining suitability Exercise 9a: Prepare project data Exercise 9b: Derive new surfaces Exercise 9c: Create a weighted suitability modelChapter 10 Presenting your project Exercise 10a: Apply detailed symbology Exercise 10b: Label features Exercise 10c: Create a page layout Exercise 10d: Share your projectAppendix Image and data source credits Data license agreement GlossaryGetting to Know ArcGIS Pro 2.6 | Official Trailer | 2020-08-10 | 00:57

  5. d

    Seattle Parks and Recreation GIS Map Layer Web Services URL - Golf Courses

    • catalog.data.gov
    • data.seattle.gov
    • +1more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.seattle.gov (2025). Seattle Parks and Recreation GIS Map Layer Web Services URL - Golf Courses [Dataset]. https://catalog.data.gov/dataset/seattle-parks-and-recreation-gis-map-layer-web-services-url-golf-courses-5cda6
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    data.seattle.gov
    Area covered
    Seattle
    Description

    Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.

  6. Inform E-learning GIS Course

    • kiribati-data.sprep.org
    • americansamoa-data.nocache.eightyoptions.com.au
    • +13more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://kiribati-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(587295), pdf(1335336), pdf(501586)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  7. a

    11.1 Image Processing with ArcGIS

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 11.1 Image Processing with ArcGIS [Dataset]. https://hub.arcgis.com/documents/94eb7b83c4d2486e9cca3985f5a7987b
    Explore at:
    Dataset updated
    Mar 3, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Imagery is processed and used for a wide variety of geospatial applications, including geographic context, visualization, and analysis. You may want to apply processing techniques on image data, visually interpret the data, use it as a background to aid interpretation of other data, or use it for analysis. In this course, you will use tools in ArcGIS to perform basic image processing. You will learn how to dynamically modify properties that enhance image display, visualize surface features, and create multiple products.After completing this course, you will be able to:Describe common types of image processing used for analysis.Relate the access of imagery to decisions in processing.Apply on-the-fly display techniques to enhance imagery.Use image-processing functions to modify images for analysis.

  8. U

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • data.usgs.gov
    • catalog.data.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Black, Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. http://doi.org/10.5066/P9RGW46K
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Sarah Black
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Dec 2, 2020
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  9. w

    Golf Courses [arcgis_rest_services_Infrastructure_MapServer_14]

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +1more
    application/excel +5
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2017). Golf Courses [arcgis_rest_services_Infrastructure_MapServer_14] [Dataset]. https://data.wu.ac.at/schema/data_hawaii_gov/aXY4bi03NXVk
    Explore at:
    xml, xlsx, csv, application/xml+rdf, json, application/excelAvailable download formats
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    Hawaii Statewide GIS Program
    Description

    Golf Courses, as of 2014

  10. Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and...

    • osti.gov
    • dataone.org
    • +1more
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States) (2024). Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2406464
    Explore at:
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States)
    DOE:DE-SC0023216
    Southeast Texas Urban Integrated Field Laboratory (SETx UIFL) – Equitable solutions for communities caught between floods and air pollution
    Area covered
    Port Arthur
    Description

    Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.

  11. l

    Golf Courses

    • visionzero.geohub.lacity.org
    • hub.arcgis.com
    • +1more
    Updated Nov 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lahub_admin (2015). Golf Courses [Dataset]. https://visionzero.geohub.lacity.org/datasets/golf-courses
    Explore at:
    Dataset updated
    Nov 17, 2015
    Dataset authored and provided by
    lahub_admin
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Description

    Locations of golf courses in Los Angeles CountyThis dataset is maintained through the County of Los Angeles Location Management System. The Location Management System is used by the County of Los Angeles GIS Program to maintain a single, comprehensive geographic database of locations countywide. For more information on the Location Management System, visit http://egis3.lacounty.gov/lms/.

  12. a

    ArcGIS Pro Fundamentals

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Pro Fundamentals [Dataset]. https://hub.arcgis.com/documents/ccd396a41cc944258e0d3c0461c473ea
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Enroll in this plan to get familiar with the user interface, apply commonly used tools, and master the basics of mapping and analyzing data using ArcGIS Pro.Goals Install ArcGIS Pro and efficiently locate tools, options, and user interface elements. Add data to a map, symbolize map features to represent type, categories, or quantities; and optimize map display at various scales. Create a file geodatabase to organize and accurately maintain GIS data over time. Complete common mapping, editing, and analysis workflows.

  13. a

    11.2 ArcGIS Pro: Using Imagery

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 11.2 ArcGIS Pro: Using Imagery [Dataset]. https://hub.arcgis.com/documents/55d6890c874b44719bb3b34321bea385
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Video based training seminar.

  14. s

    Golf Course Point

    • opendata.suffolkcountyny.gov
    • data-uvalibrary.opendata.arcgis.com
    • +1more
    Updated Dec 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suffolk County GIS (2020). Golf Course Point [Dataset]. https://opendata.suffolkcountyny.gov/maps/golf-course-point
    Explore at:
    Dataset updated
    Dec 8, 2020
    Dataset authored and provided by
    Suffolk County GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This vector dataset provides points that represent significant golf course facility locations in Suffolk County. These courses can be publicly (State, County, Town, Village) or privately owned. This dataset can be linked with the GolfCoursePolygon feature class by the FACILITYID field. In some cases, there may be multiple Golf Course Points for a single Golf Course Polygon. These data are organized for consumption in desktop and web applications.

  15. ArcGIS Technology for Mapping COVID-19

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Apr 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). ArcGIS Technology for Mapping COVID-19 [Dataset]. https://coronavirus-resources.esri.com/datasets/arcgis-technology-for-mapping-covid-19
    Explore at:
    Dataset updated
    Apr 3, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    ArcGIS Technology for Mapping COVID-19 (Esri Training).Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic. This plan will teach you the core ArcGIS technology necessary to understand, prepare for, and respond to COVID-19 in your community or organization.More information about Esri training..._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  16. g

    BOGS Training Metrics | gimi9.com

    • gimi9.com
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). BOGS Training Metrics | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_bogs-training-metrics
    Explore at:
    Dataset updated
    Nov 10, 2023
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  17. a

    07.1 Data QC with ArcGIS: Automating Validation

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 07.1 Data QC with ArcGIS: Automating Validation [Dataset]. https://hub.arcgis.com/documents/67a2b23144ef46e1a357c7284679c5ab
    Explore at:
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Have you ever assessed the quality of your data? Just as you would run spell check before publishing an important document, it is also beneficial to perform a quality control (QC) review before delivering data or map products. This course gives you the opportunity to learn how you can use ArcGIS Data Reviewer to manage and automate the quality control review process. While exploring the fundamental concepts of QC, you will gain hands-on experience configuring and running automated data checks. You will also practice organizing data review and building a comprehensive quality control model. You can easily modify and reuse this QC model over time as your organizational requirements change.After completing this course, you will be able to:Explain the importance of data quality.Select data checks to find specific errors.Apply a workflow to run individual data checks.Build a batch job to run cumulative data checks.

  18. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • rmi-data.sprep.org
    pdf, zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Republic of the Marshall Islands [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-republic-marshall
    Explore at:
    pdf(1167275), pdf(3658659), pdf(5213196), zipAvailable download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Marshall Islands, 159.92660522461 16.662506225635, 176.18637084961 3.4531078732957)), 176.18637084961 16.662506225635, POLYGON ((159.92660522461 3.4531078732957
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  19. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  20. f

    Parks and Landmarks, Detroit

    • data.ferndalemi.gov
    • datasets.ai
    • +5more
    Updated Feb 12, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2014). Parks and Landmarks, Detroit [Dataset]. https://data.ferndalemi.gov/datasets/D3::parks-and-landmarks-detroit/api
    Explore at:
    Dataset updated
    Feb 12, 2014
    Dataset authored and provided by
    Data Driven Detroit
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Municipal Parks and Landmark features for the City of Detroit. Includes golf courses, City Airport and civic plazas. Does not include all school parks, unless they are maintained by Detroit Parks and Rec. This layer was developed by Data Driven Detroit by adding to a GIS file that was provided by the City in 2010. Some parks in the file may have been "abandoned" and are not maintained any longer.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0

02.1 Integrating Data in ArcGIS Pro

Explore at:
Dataset updated
Feb 16, 2017
Dataset authored and provided by
Iowa Department of Transportation
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

Search
Clear search
Close search
Google apps
Main menu