Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.
Want to keep the data in your Hosted Feature Service current? Not interested in writing a lot of code?Leverage this Python Script from the command line, Windows Scheduled Task, or from within your own code to automate the replacement of data in an existing Hosted Feature Service. It can also be leveraged by your Notebook environment and automatically managed by the MNCD Tool!See the Sampler Notebook that features the OverwriteFS tool run from Online to update a Feature Service. It leverages MNCD to cache the OverwriteFS script for import to the Notebook. A great way to jump start your Feature Service update workflow! RequirementsPython v3.xArcGIS Python APIStored Connection Profile, defined by Python API 'GIS' module. Also accepts 'pro', to specify using the active ArcGIS Pro connection. Will require ArcGIS Pro and Arcpy!Pre-Existing Hosted Feature ServiceCapabilitiesOverwrite a Feature Service, refreshing the Service Item and DataBackup and reapply Service, Layer, and Item properties - New at v2.0.0Manage Service to Service or Service to Data relationships - New at v2.0.0Repair Lost Service File Item to Service Relationships, re-enabling Service Overwrite - New at v2.0.0'Swap Layer' capability for Views, allowing two Services to support a View, acting as Active and Idle role during Updates - New at v2.0.0Data Conversion capability, able to invoke following a download and before Service update - New at v2.0.0Includes 'Rss2Json' Conversion routine, able to read a RSS or GeoRSS source and generate GeoJson for Service Update - New at v2.0.0Renamed 'Rss2Json' to 'Xml2GeoJSON' for its enhanced capabilities, 'Rss2Json' remains for compatability - Revised at v2.1.0Added 'Json2GeoJSON' Conversion routine, able to read and manipulate Json or GeoJSON data for Service Updates - New at v2.1.0Can update other File item types like PDF, Word, Excel, and so on - New at v2.1.0Supports ArcGIS Python API v2.0 - New at v2.1.2RevisionsSep 29, 2021: Long awaited update to v2.0.0!Sep 30, 2021: v2.0.1, Patch to correct Outcome Status when download or Coversion resulted in no change. Also updated documentation.Oct 7, 2021: v2.0.2, workflow Patch correcting Extent update of Views when Overwriting Service, discovered following recent ArcGIS Online update. Enhancements to 'datetimeUtil' Support script.Nov 30, 2021: v2.1.0, added new 'Json2GeoJSON' Converter, enhanced 'Xml2GeoJSON' Converter, retired 'Rss2Json' Converter, added new Option Switches 'IgnoreAge' and 'UpdateTarget' for source age control and QA/QC workflows, revised Optimization logic and CRC comparison on downloads.Dec 1, 2021: v2.1.1, Only a patch to Conversion routines: Corrected handling of null Z-values in Geometries (discovered immediately following release 2.1.0), improve error trapping while processing rows, and added deprecation message to retired 'Rss2Json' conversion routine.Feb 22, 2022: v2.1.2, Patch to detect and re-apply case-insensitive field indexes. Update to allow Swapping Layers to Service without an associated file item. Added cache refresh following updates. Patch to support Python API 2.0 service 'table' property. Patches to 'Json2GeoJSON' and 'Xml2GeoJSON' converter routines.Sep 5, 2024: v2.1.4, Patch service manager refresh failure issue. Added trace report to Convert execution on exception. Set 'ignore-DataItemCheck' property to True when 'GetTarget' action initiated. Hardened Async job status check. Update 'overwriteFeatureService' to support GeoPackage type and file item type when item.name includes a period, updated retry loop to try one final overwrite after del, fixed error stop issue on failed overwrite attempts. Removed restriction on uploading files larger than 2GB. Restores missing 'itemInfo' file on service File items. Corrected false swap success when view has no layers. Lifted restriction of Overwrite/Swap Layers for OGC. Added 'serviceDescription' to service detail backup. Added 'thumbnail' to item backup/restore logic. Added 'byLayerOrder' parameter to 'swapFeatureViewLayers'. Added 'SwapByOrder' action switch. Patch added to overwriteFeatureService 'status' check. Patch for June 2024 update made to 'managers.overwrite' API script that blocks uploads > 25MB, API v2.3.0.3. Patch 'overwriteFeatureService' to correctly identify overwrite file if service has multiple Service2Data relationships.Includes documentation updates!
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.
Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Note: This is a large dataset. To download, go to ArcGIS Open Data Set and click the download button, and under additional resources select the shapefile or geodatabase option. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. FACTS is an activity tracking application for all levels of the Forest Service. The application allows tracking and monitoring of NEPA decisions as well as the ability to create and manage KV trust fund plans at the timber sale level. This application complements its companion NRM applications, which cover the spectrum of living and non-living natural resource information. This layer represents activities of hazardous fuel treatment reduction that are polygons. All accomplishments toward the unified hazardous fuels reduction target must meet the following definition: Vegetative manipulation designed to create and maintain resilient and sustainable landscapes, including burning, mechanical treatments, and/or other methods that reduce the quantity or change the arrangement of living or dead fuel so that the intensity, severity, or effects of wildland fire are reduced within acceptable ecological parameters and consistent with land management plan objectives, or activities that maintain desired fuel conditions. These conditions should be measurable or predictable using fire behavior prediction models or fire effects models. Go to this url for full metadata description: https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.Activity_HazFuelTrt_PL.xml
IntroductionIRWIN ArcGIS Online GeoPlatform Services The Integrated Reporting of Wildland-Fire Information (IRWIN) Production data is replicated every 60 seconds to the ArcGIS Online GeoPlatform organization so that read-only views can be provided for consumers. This replicated view is called the hosted datastore. The “IRWIN Data” group is a set of Feature Layer views based on the replicated IRWIN layers. These feature layers provide a near real-time feed of all valid IRWIN data. All incidents that have been shared through the integration service since May 20, 2014 are available through this service. The incident data provides the location of existing fires, size, conditions and several other attributes that help classify fires. The IRWIN Data service allows users to create a web map, share it with their organization, or pull it into ArcMap or ArcGIS Pro for more in-depth analysis.InstructionsTo allow the emergency management GIS staff to join the IRWIN Data group, they will need to set up an ArcGIS Online account through our account manager. Please send the response to Samantha Gibbes (Samantha.C.Gibbes@saic.com) and Kayloni Ahtong (kayloni_ahtong@ios.doi.gov). Use the below template and fill in each part as best as possible, where the point of contact (POC) is the person responsible for the account.Reply Email Body: The (name of application) application requests the following user account and access to the IRWIN Data group.POC Name: First name Last name and titlePOC Email: Username: <>_irwin (choose a username, something short, followed by _irwin)Business Justification: Once you are set up with the account, I will coordinate a call to go over any questions.
Crowdsource Polling is a configurable app template that can be used for collecting feedback and assessing public sentiment for a series of proposals, plans, or events. Users are presented with a map and list of features containing the details of each proposal, plan, or event including any attached documents. These users can then submit their feedback in the form of votes and comments. Crowdsource Polling can be accessed anonymously and by authenticating via Twitter.Use CasesCrowdsource Polling can be configured to present information such as:proposed land use changesenvironmental impact pollingpublic comment on capital projectspublic comment on proposed rights of way for transmission systemsevents permit reviewConfigurable OptionsConfigure Crowdsource Polling to present content from any web map and personalize the app by modifying the following options: Display a custom title and logo in the application headerUse a custom color schemeChoose which layer contains the features for which feedback is being solicitedProvide custom instruction on the use of the app, contact information, credits, etc. in a highly configurable help windowSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Crowdsource Polling requires a web map with at least one feature layer. In addition, the following requirements must be met to expose full app functionality:To enable votes, this layer must have a numeric field for storing the number of votes on each featureTo collect comments, the feature layer must have a related tableTo capture the names of authenticated users, the layer must have a text field for storing this valueGet Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Polling documentation.
Designates boundaries to establish extent of livestock distribution and management within the allotment. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.
Information Lookup is a configurable web application template that can be used to provide the general public, internal staff and other interested parties with information about a location. If no features are found at that location, a general message is displayed. Optionally, the location entered can be stored in a point layer.Configurable OptionsThe template can be configured using the following options:Lookup Layers: One or more polygon layers queried by the location specified. The pop-up defined in these layers combined into a single pop-up and displayed to the user. The layers can either be a feature service layer or a layer that is part of a dynamic map service. Use a vertical bar or pipe (|) to separate this list of layers. It is recommended that these layers visibility is turned off.Pop-up Title: The title of the pop-up when results are returned from one or more of the Lookup Layers.Pop-up Width: The width of the pop-up. pop-up Max Height: The maximum height title of the pop-up.Unavailable pop-up Title: The title of the pop-up when no results are returned from the Lookup Layers.Unavailable pop-up Message: The message to display in the pop-up when no results are returned from the Lookup Layers.Zoom Level for Location: The scale to set the map at when a location is specified.Store Location: Option to store the location specified in a point layer, if checked on, fill out the remaining parameters.Application Title: Enter a custom title for the application.Storage Layer Name: Name of the point feature service layer in the map to store the location. Editing must be enabled on this layer.Storage Layer Field: Field in the Storage Layer to store a value if a result was returned from the Lookup Layers.Yes Value: The value to store in the Storage Layer Field specified above when a result is returned from the Lookup Layers.No Value: The value to store in the Storage Layer Field specified above when no results are returned from the Lookup Layers.Display Splash Screen on Startup: Option to show a splash screen when the app loads.Splash Screen message: The message to display in the splash screen.Splash Screen Theme: The color scheme for the splash screen.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This web map is a subset of OpenStreetMap (OSM) point data of medical facilities for Australia and Oceania for the Pacific Region, which is updated every 15 minutes with the latest edits. You can access the Source Feature Service from here. This hosted feature layer view is referencing a hosted feature layer of OSM point (node) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes amenity features defined as a query against the hosted feature layer where the amenity value is any of 'hospital', 'clinic', 'doctors', or 'pharmacy'.In OSM, amenities are useful and important facilities for visitors and residents, such as hospitals and clinics. These features are identified with an amenity tag. There are thousands of different tag values used in the OSM database. In this feature layer, unique symbols are used for the most common amenity tags used for medical facilities.Zoom in to large scales (e.g. Neighborhood level or 1:20k scale) to see the amenity features display. You can click on a feature to get the name of the amenity. The name of the amenity will display by default at very large scales (e.g. Building level of 1:2k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this medical facilities layer displaying just one or two amenity types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. amenity is hospital), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri will publish a few such layers (e.g. Places of Worship, Schools, and Parking) that are ready to use, but not for every type of amenity.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.
Crowdsource Reporter is a configurable group app template that can be used for submitting a variety of issues or observations in a single application. Reports can be submitted anonymously, by ArcGIS named users or Twitter users. The app can also be configured to support voting for and commenting on reports submitted by others.Use CasesCrowdsource Reporter can be configured to collect information for a wide variety of topics including:citizen service requestscommunity health and safety reportscitizen science reportsreporting damaged utility assetscollecting real estate property listingsConfigurable OptionsConfigure Crowdsource Reporter to present a group of maps with editable layers, and personalize the app by modifying the following options: Customize the splash screen with a background image, title, subtitle, and options for signing in to the appSet a theme color, icon, and app messaging that suit your organizationChoose to allow users to vote and/or comment on reportsSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsCrowdsource Reporter requires an ArcGIS Online group that contains at least one map with at least one editable feature layer. In addition, the following requirements must be met to expose full app functionality:To enable votes, this layer must have a numeric field for storing the number of votes on each featureTo collect comments, the feature layer must have a related tableTo allow authenticated users to track reports they have submitted, the layer must have a text field for storing a GUID associated with their accountTo allow users to submit supporting documents with the reports, the layer must support attachmentsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Reporter documentation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.
This polyline feature class depicts the river corridors of each Wild and Scenic River designated by Congress or the Secretary of the Interior for the United States and Puerto Rico. This GIS data layer was created from a mulit-agency effort by the US Forest Service, National Park Service, Bureau of Land Managment, and the US Fish and Wildlife Servce. The spatial data were referenced to the latest High Resolution National Hydrological Data Layer (NHD 1:24,000 Scale or better), published by United States Geological Survey (USGS). Metadata
Note: This is a large dataset. To download, go to ArcGIS Open Data Set and click the download button, and under additional resources select the shapefile or geodatabase option. The Knutson-Vandenberg Act (K-V) of June 9, 1930 (16 U.S.C. 576-576b; 46 Stat. 527), as amended by the National Forest Management Act of October 22, 1976 (16 U.S.C. 1600 et seq.) authorized collection of deposits from federal timber purchasers for prompt and efficient use of funds to reestablish, protect, and improve the production of renewable resources on timber sale areas. This includes performing soil improvement and watershed restoration, wildlife habitat improvement, control of insects, disease, and noxious weeds, tree planting, seeding and other cultural treatments necessary to maintain and improve land productivity. Since its creation millions of acres of National Forest System lands (NFS) have been treated and restored to resilient conditions and terrestrial and aquatic habitat improved. Public Law 109-54 of August 2, 2005, Title IV General Provisions, Sec 412 further amended the K-V Act to allow the collection and use of CWKV funds for watershed restoration, wildlife habitat improvement, to prepare timber sales, control of insects, disease, and noxious weeds, fire community protection activities, and the maintenance of forest roads within the Forest Service region in which the timber sale occurred. Provided that such activities may be performed through the use of contracts, forest product sales, and cooperative agreements. Note that these activities are to be performed by contract and not Forest Service personnel. The Forest Service used this amendment to administratively create two K-V programs within the K-V fund; CWKV (Cooperative Work, Knutson-Vandenberg, Sale Area Projects) and CWK2 (Cooperative Work, Knutson-Vandenberg, Regional Projects). This layer shows the spatial representation where activities accomplished and funded with CWKV and CWK2 funds and reported through the Forest Service Activity Tracking System (FACTS) database. It is important to note that this layer may not contain all CWKV or CWK2 accomplished activities; the spatial portion of the activity description is not currently enforced by FACTS and at this time some are optionally reported by Forest Service units. As spatial data reporting is enforced by the application and acceptant of reporting both tabular and spatial we hope to improve the quality and comprehensiveness of the data used for this layer in coming years. Metadata
Crowdsource Manager is a configurable group app template that can be used for triaging crowd sourced data across multiple layers and maps as it is collected using applications such as Crowdsource Reporter or Collector. Using Crowdsource Manager, these reports can be reviewed and attributes such as assignment and status can be updated. Attachments and comments associated with each report are also accessible.Use CasesCrowdsource Manager can be configured for reviewing any crowd sourced information, including data collected through Crowdsource Reporter configurations such as these:citizen service requestshealth and safety reportscitizen science reportsdrone imagery reviewreviewing real estate property listingsConfigurable OptionsConfigure Crowdsource Manager to present a group of maps with editable layers, and personalize the app by modifying the following options: Display a custom title and logo in the application headerChoose a color schemeUse the map pop-up settings to specify which fields should be visible and which should be editableSupported DevicesThis application is responsively designed to support use in browsers on desktops and tablets..Data RequirementsCrowdsource Manager requires an ArcGIS Online group that contains at least one map with at least one editable feature layer.This web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Manager documentation.
Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.
This layer was created to represent stormwater spreading grounds operated by the Los Angeles County Department of Public Works. These spreading grounds are selected and managed for capturing as much water as possible during storms. Locations were chosen with permeable soil formations to enable recharging of underground aquifers. And estimated 30 to 40 percent of the water used in the County is pumped from groundwater supplies.
Sixty-seven maps from Indian Land Cessions in the United States, compiled by Charles C. Royce and published as the second part of the two-part Eighteenth Annual Report of the Bureau of American Ethnology to the Secretary of the Smithsonian Institution, 1896-1897 have been scanned, georeferenced in JPEG2000 format, and digitized to create this feature class of cession maps. The mapped cessions and reservations included in the 67 maps correspond to entries in the Schedule of Indian Land Cessions, indicating the number and location of each cession by or reservation for the Indian tribes from the organization of the Federal Government to and including 1894, together with descriptions of the tracts so ceded or reserved, the date of the treaty, law or executive order governing the same, the name of the tribe or tribes affected thereby, and historical data and references bearing thereon, as set forth in the subtitle of the Schedule. Go to this URL for full metadata: https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.TRIBALCEDEDLANDS.xml Each Royce map was georeferenced against one or more of the following USGS 1:2,000,000 National Atlas Feature Classes contained in \NatlAtlas_USGS.gdb: cities_2mm, hydro_ln_2mm, hydro_pl_2mm, plss_2mm, states_2mm. Cessions were digitized as a file geodatabase (GDB) polygon feature class, projected as NAD83 USA_Contiguous_Lambert_Conformal_Conic, which is the same projection used to georeference the maps. The feature class was later reprojected to WGS 1984 Web Mercator (auxiliary sphere) to optimize it for the Tribal Connections Map Viewer. Polygon boundaries were digitized as to not deviate from the drawn polygon edge to the extent that space could be seen between the digitized polygon and the mapped polygon at a viewable scale. Topology was maintained between coincident edges of adjacent polygons. The cession map number assigned by Royce was entered into the feature class as a field attribute. The Map Cession ID serves as the link referencing relationship classes and joining additional attribute information to 752 polygon features, to include the following: 1. Data transcribed from Royce's Schedule of Indian Land Cessions: a. Date(s), in the case of treaties, the date the treaty was signed, not the date of the proclamation; b. Tribe(s), the tribal name(s) used in the treaty and/or the Schedule; and c. Map Name(s), the name of the map(s) on which a cession number appears; 2. URLs for the corresponding entry in the Schedule of Indian Land Cessions (Internet Archive) for each unique combination of a Date and reference to a Map Cession ID (historical references in the Schedule are included); 3. URLs for the corresponding treaty text, including the treaties catalogued by Charles J. Kappler in Indian Affairs: Laws and Treaties (HathiTrust Digital Library), executive order or other federal statute (Library of Congress and University of Georgia) identified in each entry with a reference to a Map Cession ID or IDs; 4. URLs for the image of the Royce map(s) (Library of Congress) on which a given cession number appears; 5. The name(s) of the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text, as well as the name of the present-day Indian tribe or tribes; and 6. The present-day states and counties included wholly or partially within a Map Cession boundary. During the 2017-2018 revision of the attribute data, it was noted that 7 of the Cession Map IDs are missing spatial representation in the Feature Class. The missing data is associated with the following Cession Map IDs: 47 (Illinois 1), 65 (Tennessee and Bordering States), 128 (Georgia), 129 (Georgia), 130 (Georgia), 543 (Indian Territory 3), and 690 (Iowa 2), which will be updated in the future. This dataset revises and expands the dataset published in 2015 by the U.S. Forest Service and made available through the Tribal Connections viewer, the Forest Service Geodata Clearinghouse, and Data.gov. The 2018 dataset is a result of collaboration between the Department of Agriculture, U.S. Forest Service, Office of Tribal Relations (OTR); the Department of the Interior, National Park Service, National NAGPRA Program; the U.S. Environmental Protection Agency, Office of International and Tribal Affairs, American Indian Environmental Office; and Dr. Claudio Saunt of the University of Georgia. The Forest Service and Dr. Saunt independently digitized and georeferenced the Royce cession maps and developed online map viewers to display Native American land cessions and reservations. Dr. Saunt subsequently undertook additional research to link Schedule entries, treaty texts, federal statutes and executive orders to cession and reservation polygons, which he agreed to share with the U.S. Forest Service. OTR revised the data, linking the Schedule entries, treaty texts, federal statues and executive orders to all 1,172 entries in the attribute table. The 2018 dataset has incorporated data made available by the National NAGPRA Program, specifically the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text and the name of the present-day Indian tribe or tribes, as well as the present-day states and counties included wholly or partially within a Map Cession boundary. This data replaces in its entirety the National NAGPRA data included in the dataset published in 2015. The 2015 dataset incorporated data presented in state tables compiled from the Schedule of Indian Land Cessions by the National NAGPRA Program. In recent years the National NAGPRA Program has been working to ensure the accuracy of this data, including the reevaluation of the present-day Indian tribes and the provision of references for their determinations. Changes made by the OTR have not been reviewed or approved by the National NAGPRA Program. The Forest Service will continue to collaborate with other federal agencies and work to improve the accuracy of the data included in this dataset. Errors identified since the dataset was published in 2015 have been corrected, and we request that you notify us of any additional errors we may have missed or that have been introduced. Please contact Rebecca Hill, Policy Analyst, U.S. Forest Service, Office of Tribal Relations, at rebeccahill@fs.usda.gov with any questions or concerns with regard to the data included in this dataset.
The Fireshed Registry is a geospatial dashboard and decision tool built to organize information about wildfire transmission to buildings and monitor progress towards risk reduction for communities from management investments. The concept behind the Fireshed Registry is to identify and map the source of risk rather than what is at risk across all lands in the United States. While the Fireshed Registry was organized around mapping the source of fire risk to communities, the framework does not preclude the assessment of other resource management priorities and trends such as water, fish and aquatic or wildlife habitat, or recreation. The Fireshed Registry is also a multi-scale decision tool for quantifying, prioritizing, and geospatially displaying wildfire transmission to buildings in adjacent or nearby communities. Fireshed areas in the Fireshed Registry are approximately 250,000 acre accounting units that are delineated based on a smoothed building exposure map of the United States. These boundaries were created by dividing up the landscape into regular-sized units that represent similar source levels of community exposure to wildfire risk. Subfiresheds are approximately 25,000 acre accounting units nested within firesheds. Firesheds for the Conterminous U.S., Alaska, and Hawaii were generated in separate research efforts and are published in incremental versions in the Research Data Archive. They are combined here for ease of use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.