An ArcGIS Blog tutorial that guides you through creating your first dashboard using ArcGIS Dashboards.ArcGIS Dashboards is a configurable web app available in ArcGIS Online that enables users to convey information by presenting interactive charts, gauges, maps, and other visual elements that work together on a single screen.In this tutorial you will create a simple dashboard using ArcGIS Dashboards. The dashboard uses a map of medical facilities in Los Angeles County (sample data only) and includes interactive chart and list elements._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
ArcGIS Dashboards useful links (GeoNet). ArcGIS Dashboards is a configurable web app that provides location-aware data visualization and analytics for a real-time operational view of people, services, assets, and events. You can monitor the activities and key performance indicators that are vital to meeting your organization’s objectives within a dynamic dashboard._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...Edi
ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Monitor COVID-19 at a glance.ArcGIS Dashboards enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen. This video series will help you learn about ArcGIS Dashboards and how to leverage them for COVID-19 Emergency Management. Enroll in this plan to learn how to bring your data into ArcGIS Online, then configure and design your own dashboards, and make them interactive._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Two dashboards, one intelligent URL (ArcGIS Blog). Half of website traffic is generated by mobile devices and half by desktops. Does your dashboard look good on both?_Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Hong Kong has a lot of real-time data which are made available by the Government of Hong Kong Special Administrative Region at https://DATA.GOV.HK/ (“DATA.GOV.HK”). These data were processed and converted to Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform.These series of Operations Dashboard integrate different available real-time datasets in Hong Kong to provide a dashboard interface for monitoring real-time data feed on your desktop or tablet device. The objectives are to facilitate our Hong Kong ArcGIS Online users to view these data in a spatial ready format and save their data conversion effort.These series of Operations Dashboard come in three themes, environmental, traffic and integrated.The Environmental theme contains real-time temperature, air quality health risk and air pollution concentration of different districts in Hong Kong. Traffic theme contains real-time information of estimated journey time, car park vacancy, traffic speed of major roads, traffic snapshot images and speed map panels in Hong Kong.The integrated theme combines the above two sets of data, which are environmental and traffic, and makes them into one single dashboard view.
This dashboard defaults to a presentation of the crash points that will cluster the crash types and determine a predominant crash type. In the case two crash types have the same number of crashes for that type the predominant type will not be colored to either of the crash types. Clicking on the clusters will include a basic analysis of the cluster. These clusters are dynamic and will change as the user zooms in an out of the map. The clustering of crashes is functionality availalble in ArcGIS Online and the popups for the clusters is based on items that include elements configured with the Arcade language. Users interested in learning more about point clustering and the configuration of popups should read through some of the examples of the following ESRI Article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/) . The dashboard itself does include a map widget that does allow the user to toggle the visibility of layers and/or click on the crashes within the map. The popups for single crashes can be difficult to see unless the map is expanded (click in upper right of map widget). There is a Review Crashes tab that allows for another display of details of a crash that may be easier for users.This dashboard includes selectors in both the header and sidebar. By default the sidebar is collapsed and would need to be expanded. The crash dataset used in the presentation includes columns with a prefix of the unit. The persons information associated to each unit would be based on the Person that was considered the driver. Crash data can be filtered by clicking on items in chart widgets. All chart widgets have been configured to allow multiple selections and these selections will then filter the crash data accordingly. Allowing for data to be filtered by clicking on widgets is an alternative approach to setting up individual selectors. Selectors can take up a lot of space in the header and sidebar and clicking on the widget items can allow you to explore different scenarios which may ultimately be setup as selectors in the future. The Dashboard has many widgets that are stacked atop each other and underneath these stacked widgets are controls or tabs that allow the user to toggle between different visualizations. The downside to allowing a user to filter based on the output of a widget is the need for the end user to keep track of what has been clicked and the need to go back through and unclick.Many of the Crash Data Elements are based on lookups that have a fairly large range of values to select. This can be difficult sometimes with charts and the fact that a user may be overwhelmed by the number of items be plotted. Some of these values could potentially benefit by grouping similar values. The crash data being used in this dashboard hasn't been post processed to simplify some of the groupings of data and represent the value as it would appear in the Crash System. This dashboard was put together to continue the discussion on what data elements should be included in the GIS Crash Dataset. At the moment there is currently one primary dataset that is used to present crash data in Map Services. There is lots of potential to extend this dataset to include additional elements or it might be beneficial to create different versions of the crash data. Having an examples like this one will hopefully help with the discussion. Workable examples of what works and doesn't work. There are lots of data elements in the Crash System that could allow for an even more detailed safety analysis. Some of the unit items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash.Most Damaged AreaExtent of DamageUnit TypeDirection of Travel (Northbound, Southbound, Eastbound, Westbound)Pre-Crash ActionsSequence of Events 1-4Most Harmful Event Some of the persons items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash and the person would be based on the driver.Condition at Time of CrashDriver Action 1Driver Action 2Driver DistractedAgeSexPerson Type (Driver/Owner(6), Driver(1))In addition to the Units and Persons information included above each crash includes the standard crash data elements which includesDate, Time, Day of Week, Year, Month, HourInjury Level (K,A,B,C,PD)Type of CrashTownname, County, MDOT RegionWeather ConditionsLight ConditionsRoad Surface ConditionsRoad GradeSchool Bus RelatedTraffic Control DeviceType of LocationWork Zone ItemsLocation Type (NODE, ELEMENT) used for LRS# of K, # of A, # of B, # of C, # of PD InjuriesTotal # of UnitsTotal # of PersonsFactored AADT (Only currently applicable for crashes along the roadway (ELEMENT)).Location of First Harmful EventTotal Injury Count for the CrashBoolean Y/N if Pedestrian or Bicycles are InvolvedContributing EnvironmentsContributing RoadRoute Number, Milepoint, Element ID, Node ID
The Coronavirus Response solution includes two ArcGIS Dashboards configurations to help public health agencies and officials quickly deploy and share their authoritative data (ArcGIS Blog). This post delivers a detailed look at the Coronavirus Response solution dashboards including their configuration, data loading options, and common configurations patterns._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
This dashboard defaults to a presentation of the crash points that will cluster the crash types and determine a predominant crash type. In the case two crash types have the same number of crashes for that type the predominant type will not be colored to either of the crash types. Clicking on the clusters will include a basic analysis of the cluster. These clusters are dynamic and will change as the user zooms in an out of the map. The clustering of crashes is functionality availalble in ArcGIS Online and the popups for the clusters is based on items that include elements configured with the Arcade language. Users interested in learning more about point clustering and the configuration of popups should read through some of the examples of the following ESRI Article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/) . The dashboard itself does include a map widget that does allow the user to toggle the visibility of layers and/or click on the crashes within the map. The popups for single crashes can be difficult to see unless the map is expanded (click in upper right of map widget). There is a Review Crashes tab that allows for another display of details of a crash that may be easier for users.This dashboard includes selectors in both the header and sidebar. By default the sidebar is collapsed and would need to be expanded. The crash dataset used in the presentation includes columns with a prefix of the unit. The persons information associated to each unit would be based on the Person that was considered the driver. Crash data can be filtered by clicking on items in chart widgets. All chart widgets have been configured to allow multiple selections and these selections will then filter the crash data accordingly. Allowing for data to be filtered by clicking on widgets is an alternative approach to setting up individual selectors. Selectors can take up a lot of space in the header and sidebar and clicking on the widget items can allow you to explore different scenarios which may ultimately be setup as selectors in the future. The Dashboard has many widgets that are stacked atop each other and underneath these stacked widgets are controls or tabs that allow the user to toggle between different visualizations. The downside to allowing a user to filter based on the output of a widget is the need for the end user to keep track of what has been clicked and the need to go back through and unclick.Many of the Crash Data Elements are based on lookups that have a fairly large range of values to select. This can be difficult sometimes with charts and the fact that a user may be overwhelmed by the number of items be plotted. Some of these values could potentially benefit by grouping similar values. The crash data being used in this dashboard hasn't been post processed to simplify some of the groupings of data and represent the value as it would appear in the Crash System. This dashboard was put together to continue the discussion on what data elements should be included in the GIS Crash Dataset. At the moment there is currently one primary dataset that is used to present crash data in Map Services. There is lots of potential to extend this dataset to include additional elements or it might be beneficial to create different versions of the crash data. Having an examples like this one will hopefully help with the discussion. Workable examples of what works and doesn't work. There are lots of data elements in the Crash System that could allow for an even more detailed safety analysis. Some of the unit items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash.Most Damaged AreaExtent of DamageUnit TypeDirection of Travel (Northbound, Southbound, Eastbound, Westbound)Pre-Crash ActionsSequence of Events 1-4Most Harmful Event Some of the persons items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash and the person would be based on the driver.Condition at Time of CrashDriver Action 1Driver Action 2Driver DistractedAgeSexPerson Type (Driver/Owner(6), Driver(1))In addition to the Units and Persons information included above each crash includes the standard crash data elements which includesDate, Time, Day of Week, Year, Month, HourInjury Level (K,A,B,C,PD)Type of CrashTownname, County, MDOT RegionWeather ConditionsLight ConditionsRoad Surface ConditionsRoad GradeSchool Bus RelatedTraffic Control DeviceType of LocationWork Zone ItemsLocation Type (NODE, ELEMENT) used for LRS# of K, # of A, # of B, # of C, # of PD InjuriesTotal # of UnitsTotal # of PersonsFactored AADT (Only currently applicable for crashes along the roadway (ELEMENT)).Location of First Harmful EventTotal Injury Count for the CrashBoolean Y/N if Pedestrian or Bicycles are InvolvedContributing EnvironmentsContributing RoadRoute Number, Milepoint, Element ID, Node ID
This dashboard monitors the latest earthquake events around the world. It automatically updates when new events come in to show you where they occurred, how significant they were, and if any there were any resulting tsunamis. The real-time earthquake data, provided by the Living Atlas, was used to create a web map that was then used in this dashboard.To learn about the creation of this dashboard, read the blog: Making an Auto-Focusing Real-Time Dashboard. Feel free to make a copy and see how it is configured.
This operation view contains services with shipping, maritime boundaries, and weather information for the west coast of the United States. The services in this web map are powered by ArcGIS GeoEvent Extension for Server and contain alerts for ships in certain boundaries, such as nature preserves, or inclement weather.Some of the widgets contained in this operation view are lists that sort the most important data such as those in geofences and those reporting with hazardous cargo. Data contained in this operation view includes:Maritime Boundaries and Port Information:Maritime Boundaries - Various maritime boundaries information provided by the National Oceanic and Atmospheric Administration (NOAAShipping Information:Proximity Alert - Generated buffer information created from an ArcGIS for GeoEvent Extension for Server processor of military vessels.Ship Position- Simulated shipping information obtained from the US Coast Guard (USCG).Weather Information:Meteorological Service of Environment Canada - Web map service with forecast, analysis, and observation layersforunderstanding current meteorological or oceanographic data.NOAA Lightning Strike Density - Time-enabled map service providing maps of experimental lightning strike density data.NOAA Weather Observations - Time-enabled map service providing map depicting the latest surface weather and marine weather observations.NOAA Weather Radar Mosaic - Time-enabled map service providing maps depicting mosaics of base reflectivity images across the United States.NOAA Weather Satellite Information - Time-enabled map service providing maps depicting visible, infrared, and water vapor imagery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Major medical centers in the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The California Natural Resources Agency’s Access for All Initiative and 30x30 set a goal of equitable access for all to the state’s natural and open spaces. This dashboard helps illustrate the current challenges and highlights opportunities.
The Access Explorer shows statewide measures of the population living within a half mile of any open space such as a park with public access contained within the Conserved Areas database, whether it meets the 30x30 definition of conserved or not.
You can then compare those measures to areas that meet the 30x30 definition or to the population overall.
The Access Explorer is a work in progress. Enhancements will be informed by an Outdoors for All roadmap due out in early 2023.
The demographics were compiled from 'https://doc.arcgis.com/en/esri-demographics/' target='_blank' rel='nofollow ugc noopener noreferrer'>ESRI Demographics in March 2022.
Data from Michigan, Wisconsin, and Louisiana reveals that COVID-19 amplifies pre-existing racial inequities. As such, it is critical to manage your COVID-19 response to increase racial equity. Additionally, data about COVID-19 is rapidly changing. As more data becomes available and the crisis evolves, we need a dynamic response approach.COVID-19 is shedding light on pre and existing racial disparities, and inequitable community conditions surrounding the novel coronavirus are evolving rapidly. For example, racial and economic inequalities are emerging in testing and treatment. Moreover, existing inequities in access to healthy food and healthcare are increasing the risk for communities of color. As such, there is an urgency to ensure racial equity in COVID-19 responses and response efforts are adapting accordingly.
An ArcGIS Dashboard used to monitor reports of damage to publicly owned properties and submitted to the Public Assistance program.
An ArcGIS Dashboards app used by internal staff to monitor sign requests submitted by the general public.
An ArcGIS Dashboards app used by local government personnel to monitor non-emergency requests and satisfaction survey responses.
An ArcGIS Dashboard used by economic development staff to monitor business operations, finance, and workforce metrics.
An ArcGIS Dashboards app used by local government leaders to proactively monitor the status of blight complaints and efforts made to reduce blighted properties.
An ArcGIS Blog tutorial that guides you through creating your first dashboard using ArcGIS Dashboards.ArcGIS Dashboards is a configurable web app available in ArcGIS Online that enables users to convey information by presenting interactive charts, gauges, maps, and other visual elements that work together on a single screen.In this tutorial you will create a simple dashboard using ArcGIS Dashboards. The dashboard uses a map of medical facilities in Los Angeles County (sample data only) and includes interactive chart and list elements._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...