Facebook
TwitterThe Spatiotemporal Big Data Store Tutorial introduces you the the capabilities of the spatiotemporal big data store in ArcGIS Data Store, available with ArcGIS Enterprise. Observation data can be moving objects, changing attributes of stationary sensors, or both. The spatiotemporal big data store enables archival of high volume observation data, sustains high velocity write throughput, and can run across multiple machines (nodes). Adding additional machines adds capacity, enabling you to store more data, implement longer retention policies of your data, and support higher data write throughput.
After completing this tutorial you will:
Understand the concepts and best practices for working with the spatiotemporal big data store available with ArcGIS Data Store. Have configured the appropriate security settings and certificates on a enterprise server, real-time server, and a data server which are necessary for working with the spatiotemporal big data store. Have learned how to process and archive large amounts of observational data in the spatiotemporal big data store. Have learned how to visualize the observational data that is stored in the spatiotemporal big data store.
Releases
Each release contains a tutorial compatible with the version of GeoEvent Server listed. The release of the component you deploy does not have to match your version of ArcGIS GeoEvent Server, so long as the release of the component is compatible with the version of GeoEvent Server you are using. For example, if the release contains a tutorial for version 10.6; this tutorial is compatible with ArcGIS GeoEvent Server 10.6 and later. Each release contains a Release History document with a compatibility table that illustrates which versions of ArcGIS GeoEvent Server the component is compatible with.
NOTE: The release strategy for ArcGIS GeoEvent Server components delivered in the ArcGIS GeoEvent Server Gallery has been updated. Going forward, a new release will only be created when
a component has an issue,
is being enhanced with new capabilities,
or is not compatible with newer versions of ArcGIS GeoEvent Server.
This strategy makes upgrades of these custom
components easier since you will not have to
upgrade them for every version of ArcGIS GeoEvent Server
unless there is a new release of
the component. The documentation for the
latest release has been
updated and includes instructions for updating
your configuration to align with this strategy.
Latest
Release 4 - February 2, 2017 - Compatible with ArcGIS GeoEvent Server 10.5 and later.
Previous
Release 3 - July 7, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Release 2 - May 17, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Release 1 - March 18, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Facebook
TwitterData Driven Detroit created the data by selecting locations from NETS and ESRI business data with proper NAICS codes, then adding and deleting though local knowledge and confirmation with Google Streetview. These locations are Grocery stores which primarily sell food and don't include convenience stores. Visual confirmation cues included the existence of the word "grocery" in the name, or the presence of shopping carts.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
What do you need to do with your GIS data? Do you need to create earthquake hazard maps, find a location for your new business, or locate municipal utility lines? Perhaps you need to integrate your organization's data into a single system that will streamline resource management.At the core of all these projects lies the need to represent and store data in a way that supports meaningful, accurate analysis and organizational workflows. The geodatabase is the native data storage format for ArcGIS. It offers many advantages for modeling, analyzing, managing, and maintaining GIS data.With a geodatabase, you can create GIS features that mimic real-world feature behavior, apply sophisticated rules and relationships between features, and access all of your data from a centralized location. This course introduces the basic components of the geodatabase that will allow you to begin organizing your data to meet your GIS project needs.After completing this course, you will be able to:Describe the components of the geodatabase.Create geodatabase schema.Design and create a geodatabase.
Facebook
TwitterAs Esri’s commercial partner for parcel data, Regrid invites you to enjoy this free tile layer of parcel boundaries covering 100% of the United States. Complete parcel attributes are also available from an integrated Data Store."I think it’s fantastic that this layer exists. It's really helpful for my staff to see parcel boundaries in a quick and accessible layer."- Kate Berg, Geographic Information Systems (GIS) Manager | Department of Environment, Great Lakes, and EnergyVisit the Regrid Data Store for the ArcGIS User CommunityHassle-Free Parcel Data for Esri UsersWhen you click a parcel in the tile layer, you will see its address, size, and parcel ID number, along with a convenient link to purchase additional parcel attributes in The Regrid Data Store for the ArcGIS User Community. Once in the Data Store, you can purchase and download parcel files with attributes by the county and state for use in ArcGIS, as well as our add-on datasets like standardized zoning, matched building footprints, and matched secondary addresses.See regrid.com/esri for all of Regrid’s parcel products for the Esri ecosystem, including Feature Service delivery for ongoing parcel updates at scale.Key Features of Regrid's Parcel DataSourced & Standardized: Data combines authoritative public sources & third-party enrichments, aggregated, standardized, and matched by the Regrid team.158+ Million Parcel Records: Covering all 3,200+ US counties and territories.143+ Standardized Data Fields: Including geometry, ownership, buildings, secondary addresses, land use, and zoning.Universal Parcel ID & Placekey Location Identifier: Ensuring precise identification and integration.Detailed Attributes: Tax assessments, building counts, square footage, stacked parcels (condos), right-of-way, vacancy indicators and USPS deliverability. Comprehensive Coverage: 100% land parcel coverage across the US.Parcel Data Resources & DocumentationRegrid Data Dictionary / Parcel Data SchemaRegrid Coverage ReportParcel Data FAQsThank you to all the GIS professionals, state, county and federal officials, assessors, recorders, and public officials across the country who maintain the nation's parcel data and infrastructure.
Facebook
TwitterThis vector polygon dataset represents the building features in Yosemite National Park. This dataset utilizes the updated NPS Building Spatial Data Standard dated 12/15/20217. There are ongoing efforts to improve the spatial and attribute information of the buildings.Initial polygons were digitized from various sources with unknown provenance, likely satellite imagery or CAD files. Many existing building polygons were added or updated from 3D building footprints covering the 2019 Yosemite National Park 3DEP Lidar project area. New buildings are COGOed where possible, otherwise digitized from satellite imagery or extracted from DWG files on an as-needed basis. In 2025 a volunteer georeferenced old maps of the park and digitized some buildings that have been removed since the time of the maps' making. Information about how each building polygon was created is in the Map Method, Map Source, and Source Date fields.Polygons are meant to represent the building footprint, though there are still buildings represented with roof outlines, particularly private residences and others digitized from satellite imagery. Buildings with more than one FMSS Locations are split to delineate the multiple assets, even though the footprint is connected. When two or more footprints share a roof they are represented with multi-part polygons that represent the foundations of the buildings.Attributes in this dataset include identifier fields (building name and label fields, FMSS Location ID, and various other ID fields), the current state of the structure (Status and Is Extant fields), classification (Functional and Facility Use fields as well as Seasonality, Building Code, and Building Type), as well as record level metadata fields. Efforts by various staff members over the years have standardized and corrected many of these fields for most of the buildings, but inaccuracies remain.This dataset is meant for both public and internal use, with sharing status described in the Public Map Display and Data Access fields. Non-extant buildings are marked as No Public Map Display but remain a part of the dataset to provide insight into what the park used to look like.IRMA Data Store Reference
Facebook
TwitterArcGIS Tutorial seri Enterprise kali ini membahas cara mengubah Mode pada ArcGIS Data Store. Apabila ArcGIS Data Store berada pada mode READONLY kita tidak bisa melakukan publish hosted feature service sehingga kita perlu mengubahnya ke mode READWRITE.
Facebook
TwitterMapping of deicing material storage facilities in the Lake Champlain Basin was conducted during the late fall and winter of 2022-23. 126 towns were initially selected for mapping (some divisions within the GIS towns data are unincorporated “gores”). Using the list of towns, town clerk contact information was obtained from the Vermont Secretary of State’s website, which maintains a database of contact information for each town.Each town was contacted to request information about their deicing material storage locations and methods. Email and telephone scripts were developed to briefly introduce the project and ask questions about the address of any deicing material storage locations in the town, type of materials stored at each site, duration of time each site has been used, whether materials on site are covered, and the type of surface the materials are stored on, if any. Data were entered into a geospatial database application (Fulcrum). Information was gathered there and exported as ArcGIS file geodatabases and Comma Separated Values (CSV) files for use in Microsoft Excel. Data were collected for 118 towns out of the original 126 on the list (92%). Forty-three (43) towns reported that they are storing multiple materials types at their facilities. Four (4) towns have multiple sites where they store material (Dorset, Pawlet, Morristown, and Castleton). Of these, three (3) store multiple materials at one or both of their sites (Pawlet, Morristown, and Castleton). Where towns have multiple materials or locations, the record information from the overall town identifier is linked to the material stored using a unique ‘one-to-many’ identifier. Locations of deicing material facilities, as shown in the database, were based on the addresses or location descriptions provided by town staff members and was verified only using the most recent aerial imagery (typically later than 2018 for all towns). Locations have not been field verified, nor have site conditions and infrastructure or other information provided by town staff.Dataset instructions:The dataset for Deicing Material Storage Facilities contains two layers – the ‘parent’ records titled ‘salt_storage’ and the ‘child’ records titled ‘salt_storage_record’ with attributes for each salt storage site. This represents a ‘one-to-many’ data structure. To see the attributes for each salt storage site, the user needs to Relate the data. The relationship can be accomplished in GIS software. The Relate needs to be built on the following fields:‘salt_storage’: ‘fulcrum_id’‘salt_storage_record: ‘fulcrum_parent_id’This will create a one-to-many relationship between the geographic locations and the attributes for each salt storage site.
Facebook
TwitterThis dataset was originally created in 2012 by the Office of the Chief Technology Officer. OCTO staff used the Alcoholic Beverage and Cannabis Administration’s (ABCA) definition of Full-Service Grocery Stores which outlines criteria for a business to obtain licenses to sell beer, wine, and spirits. Visit abca.dc.gov for full definition.OCTO staff then reviewed the Office of Planning DC Food Policy’s 2018 Food System Assessment listing grocery stores in Appendix D, and comparing these to the ABCA definition. This led to additional locations that meet, or come very close to, the full-service grocery store criteria. The criteria in section one of ABCA’s full-service grocery store determined the initial locations included in this dataset. View the full assessment at dcfoodpolicycouncil.org.Since the initial creation of this dataset, OCTO and the Deputy Mayor for Planning and Economic Development (DMPED) staff confirm grocery store operations by comparing datasets from DLCP, media outlets, commercially licensed datasets, and onsite visits.Please review supplemental metadata for more details.
Facebook
TwitterDatabase contains information on ownership and system construction for underground storage tank facilities statewide. Database was developed in early 1990's for program management, and has been updated to more modern data systems periodically.
Facebook
TwitterThe Office of the Chief Technology Officer (OCTO), within the District of Columbia (DC) government, manages the District’s data program. This includes open data, data curation, data integration, data storage, data science, data application development and Geographic Information Systems (GIS). The open data handbook explains the process and steps OCTO undertakes when an agency submits an open dataset for publication. The handbook outlines dataset rules, documentation requirements, and policies to make data consistent and standardized. This applies to any dataset submitted for publication on the Open Data DC portal that is classified as Level 0: Open as defined in the District’s Data Policy. For previous versions of the handbook visit https://opendata.dc.gov/pages/handbook.
Facebook
Twitter
Facebook
TwitterThis online map displays California’s active Underground Gas Storage (UGS) projects and wells associated to UGS projects. Project data and well data are provided by CalGEM’s Well Statewide Tracking and Reporting System (WellSTAR). Wells are displayed by well type and the association to a UGS project.CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).WellSTAR homepageUpdate Frequency: As Needed
Facebook
TwitterThis is a layer provided by the Walmart Emergency Operations Center (EOC) to view store/club status.
Facebook
TwitterRocky Mountain National Park, Boundary Line - Public for Open DataNational Park Service Open DataIRMA Data Store Reference
Facebook
TwitterLocations of Grocery Stores, which are deemed essential following hurricanes or other disaster scenarios.This dataset is fed from the revenue department with weekly updates.
Facebook
TwitterPoint geometry with attributes displaying quick stop type businesses in East Baton Rouge Parish, Louisiana.Metadata
Facebook
TwitterStore locations with associated attributes within Travis and Williamson counties, Texas. The data and related materials are made available through Esri (http://www.esri.com) and are intended for educational purposes only (see Access and use limitations section).
Facebook
TwitterGrand Teton National Park, Post Office - Public for Open DataNational Park Service Open DataIRMA Data Store Reference
Facebook
TwitterInformation Lookup is a configurable web application template that can be used to provide the general public, internal staff and other interested parties with information about a location. If no features are found at that location, a general message is displayed. Optionally, the location entered can be stored in a point layer.Configurable OptionsThe template can be configured using the following options:Lookup Layers: One or more polygon layers queried by the location specified. The pop-up defined in these layers combined into a single pop-up and displayed to the user. The layers can either be a feature service layer or a layer that is part of a dynamic map service. Use a vertical bar or pipe (|) to separate this list of layers. It is recommended that these layers visibility is turned off.Pop-up Title: The title of the pop-up when results are returned from one or more of the Lookup Layers.Pop-up Width: The width of the pop-up. pop-up Max Height: The maximum height title of the pop-up.Unavailable pop-up Title: The title of the pop-up when no results are returned from the Lookup Layers.Unavailable pop-up Message: The message to display in the pop-up when no results are returned from the Lookup Layers.Zoom Level for Location: The scale to set the map at when a location is specified.Store Location: Option to store the location specified in a point layer, if checked on, fill out the remaining parameters.Application Title: Enter a custom title for the application.Storage Layer Name: Name of the point feature service layer in the map to store the location. Editing must be enabled on this layer.Storage Layer Field: Field in the Storage Layer to store a value if a result was returned from the Lookup Layers.Yes Value: The value to store in the Storage Layer Field specified above when a result is returned from the Lookup Layers.No Value: The value to store in the Storage Layer Field specified above when no results are returned from the Lookup Layers.Display Splash Screen on Startup: Option to show a splash screen when the app loads.Splash Screen message: The message to display in the splash screen.Splash Screen Theme: The color scheme for the splash screen.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Facebook
TwitterNational Park Service unit boundaries. Shows both the National Park boundary and the El Portal Administrative Area boundary.IRMA Data Store Reference
Facebook
TwitterThe Spatiotemporal Big Data Store Tutorial introduces you the the capabilities of the spatiotemporal big data store in ArcGIS Data Store, available with ArcGIS Enterprise. Observation data can be moving objects, changing attributes of stationary sensors, or both. The spatiotemporal big data store enables archival of high volume observation data, sustains high velocity write throughput, and can run across multiple machines (nodes). Adding additional machines adds capacity, enabling you to store more data, implement longer retention policies of your data, and support higher data write throughput.
After completing this tutorial you will:
Understand the concepts and best practices for working with the spatiotemporal big data store available with ArcGIS Data Store. Have configured the appropriate security settings and certificates on a enterprise server, real-time server, and a data server which are necessary for working with the spatiotemporal big data store. Have learned how to process and archive large amounts of observational data in the spatiotemporal big data store. Have learned how to visualize the observational data that is stored in the spatiotemporal big data store.
Releases
Each release contains a tutorial compatible with the version of GeoEvent Server listed. The release of the component you deploy does not have to match your version of ArcGIS GeoEvent Server, so long as the release of the component is compatible with the version of GeoEvent Server you are using. For example, if the release contains a tutorial for version 10.6; this tutorial is compatible with ArcGIS GeoEvent Server 10.6 and later. Each release contains a Release History document with a compatibility table that illustrates which versions of ArcGIS GeoEvent Server the component is compatible with.
NOTE: The release strategy for ArcGIS GeoEvent Server components delivered in the ArcGIS GeoEvent Server Gallery has been updated. Going forward, a new release will only be created when
a component has an issue,
is being enhanced with new capabilities,
or is not compatible with newer versions of ArcGIS GeoEvent Server.
This strategy makes upgrades of these custom
components easier since you will not have to
upgrade them for every version of ArcGIS GeoEvent Server
unless there is a new release of
the component. The documentation for the
latest release has been
updated and includes instructions for updating
your configuration to align with this strategy.
Latest
Release 4 - February 2, 2017 - Compatible with ArcGIS GeoEvent Server 10.5 and later.
Previous
Release 3 - July 7, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Release 2 - May 17, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Release 1 - March 18, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.