The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
The Intermodal Passenger Connectivity Database (IPCD) dataset was compiled on August 10, 2021 and was updated October 19, 2022 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The IPCD is a nationwide database of passenger transportation terminals, with data on the availability of connections among the various scheduled public transportation modes at each facility. IPCD is no longer being updated, the latest information is from 2022. The IPCD data covers the following types of passenger transportation terminals/stops: 1. Scheduled airline service airports. 2. Intercity bus stations (includes stations served by regular scheduled intercity bus service such as Greyhound, Trailways, code sharing buses such as Amtrak Thruway feeder buses, supplemental buses that provide additional frequencies along rail routes, and airport bus services from locations that are outside of the airport metropolitan area). 3. Intercity and transit ferry terminals. 4. Light-rail transit stations. 5. Heavy-rail transit stations. 6. Passenger-rail stations on the national rail network served by intercity rail and/or commuter rail services. 7. Bikeshare stations belonging to bikeshare systems that are open to the general public, IT-automated, and station based (contain hubs to which users can grab and return a bike). The bikeshare stations only include those from the latest IPCD data collection in 2022. Please consult the latest bikeshare layer (https://doi.org/10.21949/1522020) for the most current information. The IPCD includes data elements describing the location of the above types of terminals as well as the availability of intercity, commuter, and transit rail; scheduled air service; intercity and transit bus; intercity and transit ferry services; and bikeshare availability. Transit bus service locations are not specifically included in the database. However, the status of transit bus as a connecting mode is included for each bikeshare facility in the database. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529035
Intermodal Passenger Connectivity DatabaseThis National Geospatial Data Asset (NGDA) dataset, shared as a Bureau of Transportation Statistics (BTS) feature layer, displays the Intermodal Passenger Connectivity Database (IPCD). The IPCD is a nationwide data table of rail, air, bus and ferry passenger transportation terminals. According to BTS, IPCD is a "nationwide database of passenger transportation terminals, with data on the availability of connections among the various scheduled public transportation modes at each facility." The types of passenger transportation terminals include:Scheduled airline service airportsIntercity bus stationsIntercity and transit ferry terminalsLight-rail transit stationsHeavy-rail transit stationsPassenger-rail stationsBike-share stationsThe data describes the availability and locations of the above types of passenger transportation terminals. Note, transit bus service locations are not specifically included.Niagara Frontier Transportation Authority (NFTA) - MilitaryData currency: current Federal Service (Intermodal Passenger Connectivity Database IPCD)NGDAID: 144 (Intermodal Passenger Connectivity Database (IPCD))For more information:Intermodal Passenger Connectivity Database IPCDMetadataSupport documentation: IPCD (data dictionary)For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Transportation Theme Community. Per the Federal Geospatial Data Committee (FGDC), Transportation is defined as the "means and aids for conveying persons and/or goods. The transportation system includes both physical and non-physical components related to all modes of travel that allow the movement of goods and people between locations".For other NGDA Content: Esri Federal Datasets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Computer sessions are counted using software. EnvisionWare Computer Access and Reservation System allows library patrons to schedule time to use library computers. In addition, the Envisionware Database tracks the number of print jobs by user and printer. This functionality allows DCPL to track the number of sessions, hours of usage at each DCPL computer workstation, and the number of print jobs and pages at each printer. The output of this EnvisionWare system is a dataset that tracks the number of unique computer sessions, total hours of computer usage, printer sessions, and printer usage at each DCPL workstation by user account. The dataset includes personally identifiable information (PII) of users.WiFi sessions are also counted using software. Cisco-Meraki Wi-Fi system allows library patrons to connect to DCPL Wi-Fi. This functionality allows DCPL to track the number of wireless devices connected to DCPL Wi-Fi. The output of this Cisco-Meraki Wi-Fi system is a dataset that tracks the number Wi-Fi connections at each DCPL Branch.Gate counts are tracked Vea Web is a database system that tracks the number of entries into each library facility using heat sensors on the door of each facility. This functionality allows DCPL to track the volume of library entries at each DCPL branch every hour. The output of this Vea Web database system is a dataset that is used to report branch visits.
This packaged data collection contains two sets of two additional model runs that used the same inputs and parameters as our primary model, with the exception being we implemented a "maximum corridor length" constraint that allowed us to identify and visualize the corridors as being well-connected (≤15km) or moderately connected (≤45km). This is based on an assumption that corridors longer than 45km are too long to sufficiently accommodate dispersal. One of these sets is based on a maximum corridor length that uses Euclidean (straight-line) distance, while the other set is based on a maximum corridor length that uses cost-weighted distance. These two sets of corridors can be compared against the full set of corridors from our primary model to identify the remaining corridors, which could be considered poorly connected. This package includes the following data layers: Corridors classified as well connected (≤15km) based on Cost-weighted Distance Corridors classified as moderately connected (≤45km) based on Cost-weighted Distance Corridors classified as well connected (≤15km) based on Euclidean Distance Corridors classified as moderately connected (≤45km) based on Euclidean Distance Please refer to the embedded metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in raster GeoTIFF (.tif) format.
SSURGO consists of spatial data and a comprehensive relational database with tables that describe soil properties, interpretations and productivity values. The USDA Natural Resources Conservation Service (NRCS, formerly Soil Conservation Service) provides a download of the statewide SSURGO database that includes vector and raster spatial data, database tables and their relationship classes, and a user guide. To access SSURGO, go to the USDA NRCS Geospatial Data Gateway. To download the database, on the right side of the page, click on the Direct Data Download link under, I Want To... The Direct Data / NAIP Download page will then open. Click on the Soils Geographic Databases link. Then click on the folder named gSSURGO by State (date in folder name). Scroll through the list and select gSSURGO_NJ.zip. Then click on the Download button on the upper right. A message will open that Your Download is In Progress. You will then be prompted to select a file download location.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
INFP, CRMD and UCL have developed a framework capable of analyzing the implications of natural hazards on transportation networks, also in a time-dependent manner. This is currently embedded into an ArcGIS toolbox entitled Network-risk, which has been successfully tested for Bucharest, contributing to an insightful evaluation of emergency intervention times for ambulances and firefighters, in the case of an earthquake. The files and the user manual allow a replication of our recent analysis in Toma-Danila et al. (2022) and a download of results (such as affected roads and unaccesible areas in Bucharest), in various formats. Some of the results are also presented in an ArcGIS Online app, called "Riscul seismic al Bucurestiului" (The seismic risk of Bucharest), available at https://tinyurl.com/yt32aeyx. In the files you can find: - the Bucharest road network used in the article; - facilities for Bucharest and Ilfov, such as hospitals, firestations, buildings with seismic risk or tramway lines accesible by emergency vehicles - results of the analysis: unaccesible roads and areas, service areas around facilities, closest facilities for representative points - Excel calculator for Z elevation from OpenStreetMap data - the user manual and a ArcGIS toolbox.
Main citation: - Toma-Danila D., Tiganescu A., D'Ayala D., Armas I., Sun L. (2022) Time-Dependent Framework for Analyzing Emergency Intervention Travel Times and Risk Implications due to Earthquakes. Bucharest Case Study. Frontiers in Earth Science, https://doi.org/10.3389/feart.2022.834052
Previous references: - Toma-Danila D., Armas I., Tiganescu A. (2020) Network-risk: an open GIS toolbox for estimating the implications of transportation network damage due to natural hazards, tested for Bucharest, Romania. Natural Hazards and Earth System Sciences, 20(5): 1421-1439, https://doi.org/10.5194/nhess-20-1421-2020 - Toma-Danila D. (2018) A GIS framework for evaluating the implications of urban road network failure due to earthquakes: Bucharest (Romania) case study. Natural Hazards, 93, 97-111, https://link.springer.com/article/10.1007/s11069-017-3069-y
The California Natural Resources Agency’s Access for All Initiative and 30x30 set a goal of equitable access for all to the state’s natural and open spaces. This dashboard helps illustrate the current challenges and highlights opportunities.
The Access Explorer shows statewide measures of the population living within a half mile of any open space such as a park with public access contained within the Conserved Areas database, whether it meets the 30x30 definition of conserved or not.
You can then compare those measures to areas that meet the 30x30 definition or to the population overall.
The Access Explorer is a work in progress. Enhancements will be informed by an Outdoors for All roadmap due out in early 2023.
The demographics were compiled from 'https://doc.arcgis.com/en/esri-demographics/' target='_blank' rel='nofollow ugc noopener noreferrer'>ESRI Demographics in March 2022.
The pathway representation consists of segments and intersection elements. A segment is a linear graphic element that represents a continuous physical travel path terminated by path end (dead end) or physical intersection with other travel paths. Segments have one street name, one address range and one set of segment characteristics. A segment may have none or multiple alias street names. Segment types included are Freeways, Highways, Streets, Alleys (named only), Railroads, Walkways, and Bike lanes. SNDSEG_PV is a linear feature class representing the SND Segment Feature, with attributes for Street name, Address Range, Alias Street name and segment Characteristics objects. Part of the Address Range and all of Street name objects are logically shared with the Discrete Address Point-Master Address File layer. Appropriate uses include: Cartography - Used to depict the City's transportation network _location and connections, typically on smaller scaled maps or images where a single line representation is appropriate. Used to depict specific classifications of roadway use, also typically at smaller scales. Used to label transportation network feature names typically on larger scaled maps. Used to label address ranges with associated transportation network features typically on larger scaled maps. Geocode reference - Used as a source for derived reference data for address validation and theoretical address _location Address Range data repository - This data store is the City's address range repository defining address ranges in association with transportation network features. Polygon boundary reference - Used to define various area boundaries is other feature classes where coincident with the transportation network. Does not contain polygon features. Address based extracts - Used to create flat-file extracts typically indexed by address with reference to business data typically associated with transportation network features. Thematic linear _location reference - By providing unique, stable identifiers for each linear feature, thematic data is associated to specific transportation network features via these identifiers. Thematic intersection _location reference - By providing unique, stable identifiers for each intersection feature, thematic data is associated to specific transportation network features via these identifiers. Network route tracing - Used as source for derived reference data used to determine point to point travel paths or determine optimal stop allocation along a travel path. Topological connections with segments - Used to provide a specific definition of _location for each transportation network feature. Also provides a specific definition of connection between each transportation network feature. (defines where the streets are and the relationship between them ie. 4th Ave is west of 5th Ave and 4th Ave does intersect with Cherry St) Event _location reference - Used as source for derived reference data used to locate event and linear referencing.Data source is TRANSPO.SNDSEG_PV. Updated weekly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This story map describes and demonstrates how OpenStreetMap (OSM) data is accessible in ArcGIS, and how ArcGIS users can help to improve OSM with their GIS data. Learn the various ways in which you can access OSM data for your work, and how you can share data to be used in OSM.OpenStreetMap is a free, editable map of the world built by a community of mappers that contribute and maintain geospatial data about our world. It includes a worldwide database that is maintained by over 8 million registered users, with millions of map changes each day. Esri provides access to OSM data to ArcGIS users in multiple ways, including hosted vector tiles, feature layers, and scene layers.This story map shows several examples of how you can access OSM data in your work, and how ArcGIS organizations (e.g. cities, counties, states, nations) can share data they maintain (e.g. buildings, addresses, roads) to be used in OSM. The story illustrates the open data pipeline between ArcGIS and OSM, where open data created and published with ArcGIS can flow to OpenStreetMap and then OSM data flows back again to ArcGIS.
This packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.
https://www.penticton.ca/assets/Departments/IT/Open%20Government%20Licence.pdfhttps://www.penticton.ca/assets/Departments/IT/Open%20Government%20Licence.pdf
City of Penticton external Production web service published to the external folder on server. Source of the water layer in the External Production Web Map on ArcGIS Online. This mxd is based on the water editing template from ArcGIS solutions. The database schema is based on the Canadian Local Government Data Model. Version 1.0 Data source is CITYGIS02(PRD)
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The Shoreline Public Access Project is a geographic information systems (GIS) project to identify the location, length, and degree of public access to Washington State's marine shoreline. Before the project, it was unknown how much of Washington's 3068 miles of shoreline was public. The information was scattered throughout various government agencies and the data quality was variable. Through the Shoreline Public Access Project, the best available information has been summarized into a single data set, used to answer questions about our shoreline's ownership and public accessibility.The purpose of the Shoreline Public Access Project is: 1) to combine various sources of shoreline data into an organized and comprehensive database 2) to create a more accurate dataset of publicly accessible shoreline. The ultimate purpose of this data is to give shoreline managers and planners another tool to assist them in making important shoreline decisions.For more information, contact Christina Kellum, Washington State Department of Ecology GIS Manager, gis@ecy.wa.gov.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Locations with public internet access in Los Angeles CountyThis dataset is maintained through the County of Los Angeles Location Management System. The Location Management System is used by the County of Los Angeles GIS Program to maintain a single, comprehensive geographic database of locations countywide. For more information on the Location Management System, visit http://egis3.lacounty.gov/lms/.
The Washington State Department of Ecology supports local governments in their efforts to maintain and expand shoreline public access opportunities by developing and maintaining a detailed GIS database of public access locations (point features) along the coastal shorelines. It contains a rich variety of information such as amenities (boat launches, toilets, ADA accessible, etc.) and activities (tidepooling, hiking, shellfishing, etc.) that are available at each access point. The information was collected using a GPS in the field between 2008-2010 and is updated as resources allow. The inventory is available through the Ecology's online Washington Coastal Atlas. This data corresponds with the Marine Shoreline Public Access GIS dataset (linear features) which is maintained by Ecology's Environmental Assistance Program.
An attempt to collect, format, analyse and disseminate surveyed marine biological data deriving from the Eastern Mediterranean and Black Sea region is currently under development at the Hellenic Center for Marine Research (HCMR, Greece). The effort has been supported by the MedOBIS project (Mediterranean Ocean Biogeographic Information System) and has been carried out in cooperation with the Aristotelian University of Thessaloniki (Greece), the National Institute of Oceanography (Israel) and the Institute of Biology of the Southern Seas (Ukraine).
The aim is to develop a taxon-based biogeography database and online data server with a link to survey and provide satellite environmental data. Currently, the primary features of the MedOBIS application are its offline GIS data formatting capabilities and its online Java and JavaScript enabling data server with taxon-based search, mapping and data downloading capabilities. In its completion, the MedOBIS online marine biological data system (http://www.iobis.org/OBISWEB/ObisDynPage1.jsp?content=meta/42.html) will be a single source of biological and environmental data (raw and analysed) as well as an online GIS tool for access of historical and current data by marine researchers. It will function as the Eastern Mediterranean and Black Sea node of EurOBIS (the European node of the International OBIS initiative, part of the Census of Marine Life).
INTRODUCTION
The international and interdisciplinary nature of the biological degradation issue as well as the technological advances of the Internet capabilities allowed the development of a considerable number of interrelated online databases. The free dissemination of valuable historical and current biological, environmental and genetic information has contributed to the establishment of an interdisciplinary platform targeted towards information integration at regional and also at global scales and to the development of information-based management schemes about our common interest.
The spatial component of these data has led to the integration of the information by means of the Geographic Information System (GIS) technology. The latter is widely used as the natural framework for spatial data handling (Wright & Bartlett 1999, Valavanis 2002). GIS serves as the basic technological infrastructure for several online marine biodiversity databases available on the Internet today. Developments like OBIS (Ocean Biogeographic Information System, "http://www.iobis.org/"), OBIS-SEAMAP (Spatial Ecological Analysis of Megavertebrate Populations, "http://seamap.env.duke.edu/") and FIGIS (FAO Fisheries Global Information System, http://www.fao.org/fishery/figis) facilitate the study of anthropogenic impacts on threatened species, enhance our ability to test biogeographic and biodiversity models, support modelling efforts to predict distribution changes in response to environmental change and develop a strong potential for the public outreach component. In addition, such online database systems provide a broader view of marine biodiversity problems and allow the development of management practices that are based on synthetic analysis of interdisciplinary data (Schalk 1998, Decker & O'Dor 2002, Tsontos & Kiefer 2002).
Towards this end, a development of a new online marine biological information system is presented here in its initial phase. MedOBIS (Mediterranean Ocean Biogeographic Information System) intends to assemble, formulate and disseminate marine biological data for the Eastern Mediterranean and Black Sea regions focusing on the assurance and longevity of historical surveyed data, the assembly of current and new information and the dissemination of raw and integrated biological and environmental data and future products through the Internet.
MedOBIS DESCRIPTION
MedOBIS current development consists of four main phases (Fig. 1). The data assembly phase is based on the free contribution of biological data from various national and international scientific surveys in the region. The data formatting phase is based on a GIS (ESRI, 1994), under which the geographic location of data stations is used to convert station data and their attributes to GIS shapefiles. The data analysis phase is based on data integration through GIS and spatial analyses (e.g. species distribution maps, species-environment relations, etc). Finally, the dissemination phase is based on ALOV Map, a free portable Java application for publication of vector and raster maps to the Internet and interactive viewing on web browsers. It supports navigation and search capabilities and allows working with multiple layers, thematic maps, hyperlinked features and attributed data.
During the on-going data assembly phase, a total number of 776 stations with surveyed benthic biological data was employed. These data include mainly benthic species abundance (for nearly 3000 benthic organisms), benthic substrate types and several environmental parameters. Currently, 100 stations have been assembled for the Ionian Sea, 570 stations for the Aegean Sea and 106 stations for the Black Sea. The temporal resolution of these data extends for the period 1937-2000 while most data cover the period 1986-1996. Additionally, monthly satellite images of sea surface temperature (SST) and chlorophyll (Chl-a) were assembled for the period 1998-2003. Satellite data were obtained from the Advanced Very High Resolution Radiometer (AVHRR SST) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS Chl-a).
During the data formatting phase, all assembled surveyed stations were converted to a GIS shapefile (Fig. 2). This GIS information layer includes the geographic coordinates of the stations as well as stations' identification number. Station data attributes were organised in an MS Access Database while satellite data were embedded in a GIS database as GIS regular grids. The MedOBIS data analysis phase is still at the initial stage. Several off line analytical published efforts (e.g. Arvanitidis et al. 2002, Valavanis et al. 2004a,b,c) will be included in the MedOBIS development, which mainly focus on species distribution maps, mapping of productive oceanic processes and species-environment interactions.
The MedOBIS dissemination phase ("http://www.medobis.org/") is based on ALOV Map ("http://www.alov.org/"), a joint project of ALOV Software and the Archaeological Computing Laboratory, University of Sydney, Australia. ALOV Map is a Java-based application for publication of GIS data on the Internet and interactive viewing on web browsers. ALOV Map is designed to display geographical information stored in shapefiles or in any SQL database or even in an XML (Extensible Markup Language) document serving as a database. MedOBIS uses ALOV Map's full capabilities and runs in a client-server mode (Fig. 3). ALOV Map is connected to an MS Access database via a servlet container. This architecture was needed to connect the biological data with the spatial data and facilitate search options, such as, which species are found at which stations. Additionally, a JavaScript code is invoked, which searches the data, pops up a window with the results and then shows the relevant stations on the map.
To provide a taxon-based search capability to the MedOBIS development, the sampling data as well as the relevant spatial data are stored in the database, so taxonomic data can be linked with the geographical data by SQL (Structured Query Language) queries. To reference each species to its location on the map, the database queries are stored and added to the applet as individual layers. A search function written in JavaScript searches the attribute data of that layer, displays the results in a separate window and marks the matching stations on the map (Fig. 4). Finally, selecting several stations by drawing a zooming rectangle on the map provides a list with predefined themes from which the user may select more information (Fig. 5).
CURRENT LIMITATIONS AND FUTURE PLANS
A disadvantage of embedding information from the database as a layer is the relatively long download time due to the current MedOBIS-ALOV Map client-server architecture. An appropriate solution would be a direct search on the server side, which will allow partial data downloading to the client side. This work will be embedded in the MedOBIS application in the future (client-side architecture), when the size of assembled data becomes relatively 'heavy' for the current client-server architecture. This is an on-going process, since the MedOBIS initiative has been endorsed by the "Excellence of the Institute of Marine Biology of Crete (IMBC) in Marine Biodiversity", a Hellenic National Project that has been evaluated and approved by European experts. As more data will be assembled in time-series databases, an additional future work will include the development of MedOBIS data analysis phase, which is planned to include GIS modelling/mapping of species-environment interactions.
Size reference: 2953 species; 776 stations
[Source: The information provided in the summary was extracted from the MarBEF Data System at "http://www.marbef.org/data/eurobisproviders.php"]
The Bikeshare dataset was compiled on August 31, 2024 and was updated March 30, 2025 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The bikeshare layer shows the location of all bikeshare docking stations, along with their address if known and the city and state it is located in. Prior to April 30, 2025, this bikeshare layer reflected the bikeshare stations available for the latest Intermodal Passenger Connectivity Database (IPCD) data collection along with intermodal passenger connectivity information. To provide this timelier snapshot of bikeshare stations, the Bureau of Transportation Statistics is no longer including connectivity information. To obtain the previously provided IPCD Bikeshare layer on NTAD for the latest only bikeshare year that included connectivity information, query the current IPCD layer on NTAD (https://doi.org/10.21949/1522239) using the query where the “BIKE_SHARE” field is equal to 1, signifying that bikeshare service is provided at that location. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529012
description: The National Weather Service (NWS) Storm Prediction Center (SPC) routinely collects reports of severe weather and compiles them with public access from the database called SeverePlot (Hart and Janish 1999) with a Graphic Information System (GIS). The composite SVRGIS information is made available to the public primarily in .zip files of approximately 50MB size. The files located at the access point have organized severe weather data by County Warning Area (CWA). A CWA is a grouping of counties for which severe weather information is distributed. Although available to all, the data provided may be of particular value to weather professionals and students of meteorological sciences. An instructional manual is provided on how to build and develop a basic severe weather report GIS database in ArcGis and is located at the technical documentation site contained in this metadata catalog.; abstract: The National Weather Service (NWS) Storm Prediction Center (SPC) routinely collects reports of severe weather and compiles them with public access from the database called SeverePlot (Hart and Janish 1999) with a Graphic Information System (GIS). The composite SVRGIS information is made available to the public primarily in .zip files of approximately 50MB size. The files located at the access point have organized severe weather data by County Warning Area (CWA). A CWA is a grouping of counties for which severe weather information is distributed. Although available to all, the data provided may be of particular value to weather professionals and students of meteorological sciences. An instructional manual is provided on how to build and develop a basic severe weather report GIS database in ArcGis and is located at the technical documentation site contained in this metadata catalog.
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt