Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Facebook
TwitterCensus data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterEach year, the Forecasting and Trends Office (FTO) publishes population estimates and future year projections. The population estimates can be used for a variety of planning studies including statewide and regional transportation plan updates, subarea and corridor studies, and funding allocations for various planning agencies.The 2021 population estimates are based on the population estimates developed by the Bureau of Economic and Business Research (BEBR) at the University of Florida. BEBR uses the decennial census count for April 1, 2020, as the starting point for state-level projections. More information is available from BEBR here.This dataset contains county boundaries in the State of Florida with 2021 population density estimates. All legal boundaries and names in this dataset are from the US Census Bureau’s TIGER/Line Files (2021). Please see the Data Dictionary for more information on data fields. Data Sources:FDOT FTO 2020 and 2021 Population Estimates by CountyUS Census Bureau 2020 Decennial CensusUS Census Bureau’s TIGER/Line Files (2021)Bureau of Economic and Business Research (BEBR) – Florida Estimates of Population 2021 Data Coverage: StatewideData Time Period: 2021 Date of Publication: October 2022 Point of Contact:Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719
Facebook
TwitterThe Kernel Density tool calculates the density of features in a neighborhood around those features.Kernel Density calculates the density of point features around each output raster cell. Conceptually, a smoothly curved surface is fitted over each point. The surface value is highest at the location of the point and diminishes with increasing distance from the point, reaching zero at the Search radius distance from the point. Only a circular neighborhood is possible. The volume under the surface equals the Population field value for the point, or 1 if NONE is specified. The density at each output raster cell is calculated by adding the values of all the kernel surfaces where they overlay the raster cell center. This layer is included in a storymap about the Panama City crayfish, a species listed as Threatened under the Endangered Species Act in 2022. Storymap link: https://fws.maps.arcgis.com/home/item.html?id=a791906fe3f8433eabadda5898184372
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Original data can be downloaded from here. Another online version of the data can be found HERE.This version presented and hosted by CPAWS-NL allows for data extraction and analysis within ArcGIS Online Map Viewer."Kernel density estimation (KDE) utilizes spatially explicit data to model the distribution of a variable of interest. It is a simple non-parametric neighbor-based smoothing function that relies on few assumptions about the structure of the observed data. It has been used in ecology to identify hotspots, that is, areas of relatively high biomass/abundance, and in 2010 was used by Fisheries and Oceans Canada to delineate significant concentrations of corals and sponges. The same approach has been used successfully in the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area. Here, we update the previous analyses with the catch records from up to 5 additional years of trawl survey data from Eastern Canada, including the Gulf of St. Lawrence. We applied kernel density estimation to create a modelled biomass surface for each of sponges, small and large gorgonian corals, and sea pens, and applied an aerial expansion method to identify significant concentrations of theses taxa. We compared our results to those obtained previously and provided maps of significant concentrations as well as point data co-ordinates for catches above the threshold values used to construct the significant area polygons. The borders of the polygons can be refined using knowledge of null catches and species distribution models of species presence/absence and/or biomass." (DOI: 10.17632/dtk86rjm86.2)
Facebook
TwitterThis map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
Facebook
TwitterThe aquifer risk map is being developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding.
This layer contains summarized water quality risk per census block group, square mile section, and well point. The overall census block group water quality risk is based on five risk factors (1. the count of chemicals with a long-term average (20 year) or recent result (within 2 years) above the MCL, 2. the count of chemicals with a long-term average (20 year) or recent result (within 2 years) within 80% of the MCL, 3. the average magnitude or results above the MCL, 4. the percent area with chemicals above the MCL, and 5. the percent area with chemicals within 80% of the MCL). The specific chemicals that contribute to these risk factors are listed as well. Higher values for each individual risk factor contribute to a higher overall score. The scores are converted to percentiles to normalize the results. Higher percentiles indicate higher water quality risk. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells, collected following a similar methodology as the Domestic Well Needs Assessment White Paper. The methodology used to calculate the risk percentiles is outlined in the Aquifer Risk Map Methodology. To provide comments or feedback on this map, please email SAFER@waterboards.ca.gov or Emily.Houlihan@Waterboards.ca.gov.Methodology for the draft aquifer risk map available for download.
Facebook
TwitterThe Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.
Facebook
TwitterData are derived from generalized linear models and model selection techniques using 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents. Models were used to determine the strength of association among a diverse set of biotic and abiotic factors associated with wild pig population dynamics. The models and associated factors were used to predict the potential population density of wild pigs at the 1 km resolution. Predictions were then compared with available population estimates for wild pigs on their native range in North America indicating the predicted densities are within observed values. See Lewis et al (2017) and Lewis et al (2019) for more information.Lewis, Jesse S., Matthew L. Farnsworth, Chris L. Burdett, David M. Theobald, Miranda Gray, and Ryan S. Miller. "Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal." Scientific reports7 (2017): 44152.Lewis, Jesse S., Joseph L. Corn, John J. Mayer, Thomas R. Jordan, Matthew L. Farnsworth, Christopher L. Burdett, Kurt C. VerCauteren, Steven J. Sweeney, and Ryan S. Miller. "Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States." Biological Invasions21, no. 7 (2019): 2373-2384.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The nine-banded Armadillo (Dasypus novemcinctus) is the only species of Armadillo in the United States and alters ecosystems by excavating extensive burrows used by many other wildlife species. Relatively little is known about its habitat use or population densities, particularly in developed areas, which may be key to facilitating its range expansion. We evaluated Armadillo occupancy and density in relation to anthropogenic and landcover variables in the Ozark Mountains of Arkansas along an urban to rural gradient. Armadillo detection probability was best predicted by temperature (positively) and precipitation (negatively). Contrary to expectations, occupancy probability of Armadillos was best predicted by slope (negatively) and elevation (positively) rather than any landcover or anthropogenic variables. Armadillo density varied considerably between sites (ranging from a mean of 4.88 – 46.20 Armadillos per km2) but was not associated with any environmental or anthropogenic variables. Methods Site Selection Our study took place in Northwest Arkansas, USA, in the greater Fayetteville metropolitan area. We deployed trail cameras (Spypoint Force Dark (Spypoint Inc, Victoriaville, Quebec, Canada) and Browning Strikeforce XD cameras (Browning, Morgan, Utah, USA) over the course of two winter seasons, December 2020-March 2021, and November 2021-March 2022. We sampled 10 study sites in year one, and 12 study sites in year two. All study sites were located in the Ozark Mountains ecoregion in Northwest Arkansas. Sites were all Oak Hickory dominated hardwood forests at similar elevation (213.6 – 541 m). Devils Eyebrow and ONSC are public natural areas managed by the Arkansas Natural heritage Commission (ANHC). Devil’s Den and Hobbs are managed by the Arkansas state park system. Markham Woods (Markham), Ninestone Land Trust (Ninestone) and Forbes, are all privately owned, though Markham has a publicly accessible trail system throughout the property. Lake Sequoyah, Mt. Sequoyah Woods, Kessler Mountain, Lake Fayetteville, and Millsaps Mountain are all city parks and managed by the city of Fayetteville. Lastly, both Weddington and White Rock are natural areas within Ozark National Forest and managed by the U.S. Forest Service. We sampled 5 sites in both years of the study including Devils Eyebrow, Markham Hill, Sequoyah Woods, Ozark Natural Science Center (ONSC), and Kessler Mountain. We chose our study sites to represent a gradient of human development, based primarily on Anthropogenic noise values (Buxton et al. 2017, Mennitt and Fristrup 2016). We chose open spaces that were large enough to accommodate camera trap research, as well as representing an array of anthropogenic noise values. Since anthropogenic noise is able to permeate into natural areas within the urban interface, introducing human disturbance that may not be detected by other layers such as impervious surface and housing unit density (Buxton et al. 2017), we used dB values for each site as an indicator of the level of urbanization. Camera Placement We sampled ten study sites in the first winter of the study. At each of the 10 study sites, we deployed anywhere between 5 and 15 cameras. Larger study areas received more cameras than smaller sites because all cameras were deployed a minimum of 150m between one another. We avoided placing cameras on roads, trails, and water sources to artificially bias wildlife detections. We also avoided placing cameras within 15m of trails to avoid detecting humans. At each of the 12 study areas we surveyed in the second winter season, we deployed 12 to 30 cameras. At each study site, we used ArcGIS Pro (Esri Inc, Redlands, CA) to delineate the trail systems and then created a 150m buffer on each side of the trail. We then created random points within these buffered areas to decide where to deploy cameras. Each random point had to occur within the buffered areas and be a minimum of 150m from the next nearest camera point, thus the number of cameras at each site varied based upon site size. We placed all cameras within 50m of the random points to ensure that cameras were deployed on safe topography and with a clear field of view, though cameras were not set in locations that would have increased animal detections (game trails, water sources, burrows etc.). Cameras were rotated between sites after 5 or 10 week intervals to allow us to maximize camera locations with a limited number of trail cameras available to us. Sites with more than 25 cameras were active for 5 consecutive weeks while sites with fewer than 25 cameras were active for 10 consecutive weeks. We placed all cameras on trees or tripods 50cm above ground and at least 15m from trails and roads. We set cameras to take a burst of three photos when triggered. We used Timelapse 2.0 software (Greenberg et al. 2019) to extract metadata (date and time) associated with all animal detections. We manually identified all species occurring in photographs and counted the number of individuals present. Because density estimation requires the calculation of detection rates (number of Armadillo detections divided by the total sampling period), we wanted to reduce double counting individuals. Therefore, we grouped photographs of Armadillos into “episodes” of 5 minutes in length to reduce double counting individuals that repeatedly triggered cameras (DeGregorio et al. 2021, Meek et al. 2014). A 5 min threshold is relatively conservative with evidence that even 1-minute episodes adequately reduces double counting (Meek et al. 2014). Landcover Covariates To evaluate occupancy and density of Armadillos based on environmental and anthropogenic variables, we used ArcGIS Pro to extract variables from 500m buffers placed around each camera (Table 2). This spatial scale has been shown to hold biological meaning for Armadillos and similarly sized species (DeGregorio et al. 2021, Fidino et al. 2016, Gallo et al. 2017, Magle et al. 2016). At each camera, we extracted elevation, slope, and aspect from the base ArcGIS Pro map. We extracted maximum housing unit density (HUD) using the SILVIS housing layer (Radeloff et al. 2018, Table 2). We extracted anthropogenic noise from the layer created by Mennitt and Fristrup (2016, Buxton et al. 2017, Table 2) and used the “L50” anthropogenic sound level estimate, which was calculated by taking the difference between predicted environmental noise and the calculated noise level. Therefore, we assume that higher levels of L50 sound corresponded to higher human presence and activity (i.e. voices, vehicles, and other sources of anthropogenic noise; Mennitt and Fristrup 2016). We derived the area of developed open landcover, forest area, and distance to forest edge from the 2019 National Land Cover Database (NLDC, Dewitz 2021, Table 2). Developed open landcover refers to open spaces with less than 20% impervious surface such as residential lawns, cemeteries, golf courses, and parks and has been shown to be important for medium-sized mammals (Gallo et al. 2017, Poessel et al. 2012). Forest area was calculated by combing all forest types within the NLCD layer (deciduous forest, mixed forest, coniferous forest), and summarizing the total area (km2) within the 500m buffer. Distance to forest edge was derived by creating a 30m buffer on each side of all forest boundaries and calculating the distance from each camera to the nearest forest edge. We calculated distance to water by combining the waterbody and flowline features in the National Hydrogeography Dataset (U.S. Geological Survey) for the state of Arkansas to capture both permanent and ephemeral water sources that may be important to wildlife. We measured the distance to water and distance to forest edge using the geoprocessing tool “near” in ArcGIS Pro which calculates the Euclidean distance between a point and the nearest feature. We extracted Average Daily Traffic (ADT) from the Arkansas Department of Transportation database (Arkansas GIS Office). The maximum value for ADT was calculated using the Summarize Within tool in ArcGIS Pro. We tested for correlation between all covariates using a Spearman correlation matrix and removed any variable with correlation greater than 0.6. Pairwise comparisons between distance to roads and HUD and between distance to forest edge and forest area were both correlated above 0.6; therefore, we dropped distance to roads and distance to forest edge from analyses as we predicted that HUD and forest area would have larger biological impacts on our focal species (Kretser et al. 2008). Occupancy Analysis In order to better understand habitat associations while accounting for imperfect detection of Armadillos, we used occupancy modeling (Mackenzie et al. 2002). We used a single-species, single-season occupancy model (Mackenzie et al. 2002) even though we had two years of survey data at 5 of the study sites. We chose to do this rather than using a multi-season dynamic occupancy model because most sites were not sampled during both years of the study. Even for sites that were sampled in both years, cameras were not placed in the same locations each year. We therefore combined all sampling into one single-season model and created unique site by year combinations as our sampling locations and we used year as a covariate for analysis to explore changes in occupancy associated with the year of study. For each sampling location, we created a detection history with 7 day sampling periods, allowing presence/absence data to be recorded at each site for each week of the study. This allowed for 16 survey periods between 01 December 2020, and 11 March 2021 and 22 survey periods between 01 November 2021 and 24 March 2022. We treated each camera as a unique survey site, resulting in a total of 352 sites. Because not all cameras were deployed at the same time and for the same length of time, we used a staggered entry approach. We used a multi-stage fitting approach in which we
Facebook
TwitterThis web map shows the Mid Year Population Density within the 18 districts of Hong Kong. It is a subset of data made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
Facebook
TwitterSoil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Facebook
TwitterThis layer presents the Census 2010 Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000ppsm /500ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: East Asia and Pacific SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Republic of Korea data available from WorldPop here.
Facebook
TwitterThis is the 2022 version of the Aquifer Risk Map. The 2021 version of the Aquifer Risk Map is available here.This aquifer risk map is developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing raw source groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This is the final 2022 map based upon feedback received from the 2021 map. A summary of methodology updates to the 2022 map can be found here.This map displays raw source groundwater quality risk per square mile section. The water quality data is based on depth-filtered, declustered water quality results from public and domestic supply wells. The process used to create this map is described in the 2022 Aquifer Risk Map Methodology document. Data processing scripts are available on GitHub. Download/export links are provided in this app under the Data Download widget.This draft version was last updated December 1, 2021. Water quality risk: This layer contains summarized water quality risk per square mile section and well point. The section water quality risk is determined by analyzing the long-tern (20-year) section average and the maximum recent (within 5 years) result for all sampled contaminants. These values are compared to the MCL and sections with values above the MCL are “high risk”, sections with values within 80%-100% of the MCL are “medium risk” and sections with values below 80% of the MCL are “low risk”. The specific contaminants above or close to the MCL are listed as well. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells.Individual contaminants: This layer shows de-clustered water quality data for arsenic, nitrate, 1,2,3-trichloropropane, uranium, and hexavalent chromium per square mile section. Domestic Well Density: This layer shows the count of domestic well records per square mile. The domestic well density per square mile is based on well completion report data from the Department of Water Resources Online System for Well Completion Reports, with records drilled prior to 1970 removed and records of “destruction” removed.State Small Water Systems: This layer displays point locations for state small water systems based on location data from the Division of Drinking Water.Public Water System Boundaries: This layer displays the approximate service boundaries for public water systems based on location data from the Division of Drinking Water.Reference layers: This layer contains several reference boundaries, including boundaries of CV-SALTS basins with their priority status, Groundwater Sustainability Agency boundaries, census block group boundaries, county boundaries, and groundwater unit boundaries. ArcGIS Web Application
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2024 (inhabitants per km²) per municipality Statistical data sources: INSEE Grand Est, IWEPS, Statistisches Landesamt Rheinland-Pfalz, Statistisches Amt Saarland Geodata sources: ACT Luxembourg 2024, IGN France 2022, GeoBasis-DE / BKG 2024, NGI-Belgium 2024. Harmonization: SIG-GR / GIS-GR 2024 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2434&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/4ba433fb-6c1e-459f-89ca-a2914eedfdaa This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2024
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Biomass and Carbon per Acre dataset was compiled for the 48-state CONUS Area in order to identify local, state and regional trends in forest cover and landscape composition. It can be used as a graphic, as inputs to GIS overlay procedures, or to summarize average or total amounts of forest attributes within analysis areas of interest. Through application of a nearest-neighbor imputation approach, mapped estimates of forest biomass density were developed for the contiguous United States using the annual forest inventory conducted by the USDA Forest Service Forest Inventory and Analysis (FIA) program, MODIS satellite imagery, and ancillary geospatial datasets. This data product contains the following 7 raster maps: Aboveground Forest Biomass, Belowground Forest Biomass, Forest Tree Bole Biomass, Forest Sapling Biomass, Forest Stump Biomass, Forest Top Biomass, Woodland Species Biomass. All layers have a 250 meter pixel resolution and values represent biomass pounds per acre. The paper on which these maps are based may be found here: https://dx.doi.org/10.2737/RDS-2013-0004 Access to full metadata and other information can be accessed here: https://dx.doi.org/10.2737/RDS-2013-0004This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterThis map shows population density of the City of Dallas derived from US Census Bureau 2020 Tracts with population change from 2010 to 2020, by race and ethnicity, plus household unit count changes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2024 (inhabitants per km²). Reference date: 01.01.2024 (Luxembourg and Wallonia), 31.12.2023 (Rhineland-Palatinate and Saarland), 01.01.2022 (Lorraine) Territorial entities: municipalities (Saarland, Wallonie), cantons (Luxembourg), EPCI (Lorraine), Verbandsgemeinden and verbandsfreie Städte und Gemeinden (Rheinland-Pfalz) Statistical data sources: DATer, INSEE Grand Est, IWEPS, Région Grand Est, STATEC, Statistisches Landesamt Rheinland-Pfalz, Statistisches Landesamt Saarland. Harmonization: SIG-GR / GIS-GR 2025 Geodata sources: GeoBasis-DE / BKG, IGN France, NGI-Belgium, ACT Luxembourg. Harmonization: SIG-GR / GIS-GR 2025 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2435&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/93569c33-a975-4885-9896-626cff07cfa0 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2024_infra
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density 2015 (inhabitants per km²), Lorraine: 2013 Territorial entities: arrondissements (Wallonie), zones d'emploi (Lorraine), cantons (Luxembourg), Kreise (Saarland, Rheinland-Pfalz) Statistical data sources: INSEE Grand Est; SPF Economie; STATEC; Statistisches Landesamt Rheinland-Pfalz; Statistisches Amt Saarland. Harmonization: IBA / OIE 2016 Geodata sources: EuroGeographics EuroRegionalMap v3.0 - 2010. Harmonization: SIG-GR / GIS-GR 2016 Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=1732&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/4f71026c-4ab0-4153-a00d-2a5d34aae307 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Pop_density_WMS/guest with layer name(s): -Pop_density_2015
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.