Facebook
TwitterBolton & Menk, an engineering planning and consulting firm from the Midwestern United States has released a series of illustrated children’s books as a way of helping young people discover several different professions that typically do not get as much attention as other more traditional ones do.Topics of the award winning book series include landscape architecture, civil engineering, water resource engineering, urban planning and now Geographic Information Systems (GIS). The books are available free online in digital format, and easily accessed via a laptop, smart phone or tablet.The book Lindsey the GIS Specialist – A GIS Mapping Story Tyler Danielson, covers some the basics of what geographic information is and the type of work that a GIS Specialist does. It explains what the acronym GIS means, the different types of geospatial data, how we collect data, and what some of the maps a GIS Specialist creates would be used for.Click here to check out the GIS Specialist – A GIS Mapping Story e-book
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Facebook
TwitterBecome an ArcGIS Hub Specialist.ArcGIS Hub is a cloud-based engagement platform that helps organizations work more effectively with their communities. Learn how to use ArcGIS Hub capabilities and related technology to coordinate and engage with external agencies, community partners, volunteers, and citizens to tackle the projects that matter most in your community._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterThis layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Imagery. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. See World Imagery for more details.The map service supporting this layer will enable you to export up to 150,000 tiles in a single request. For estimation purposes, this is large enough to support the export of:Large city (e.g. San Francisco) down to full level of detail at ~1:1,000 scale (Level 19)Medium size state or province (e.g. Colorado) down to scale of ~1:36,000 (Level 14)Medium to large country (e.g. Continental United States) down to scale of ~1:288,000 (Level 11)This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Imagery basemap.Service Information for DevelopersTo export tiles for World Imagery, you must use the instance of the World_Imagery service hosted on the tiledbasemaps.arcgis.com server referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Facebook
TwitterGIS and pandemic influenza planning and response (White Paper).Around the world, public health organizations at all levels of government and the partners that support them are responding to pandemic influenza.Infectious disease experts predicted a pandemic, saying it was not a question of if but when.Pandemic influenza is a global outbreak of disease that occurs when a new influenza virus appears or emerges in the human population; causes serious illness; and spreads easily from person to person, occurring over a wide geographic area and often crossing geographic boundaries. Pandemic outbreaks are caused by subtypes of influenza virus that have never before circulated among people. _Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwittereBook that explains GIS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).
Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.
Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.
Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------
Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.
Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.
References:
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.
Facebook
TwitterThis dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Facebook
TwitterThis specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.
How Do We Create Polygons?
-All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery, satellite data, and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct highly detailed polygons. This meticulous process ensures maximum accuracy and consistency. -We verify our polygons through multiple quality assurance checks, focusing on accuracy, relevance, and completeness.
What's More?
-Custom Polygon Creation: Our team can build polygons for any location or category based on your requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard GIS formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.
Unlock the Power of POI and Geospatial Data
With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market and location analyses to identify growth opportunities. -Pinpoint the ideal locations for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute location-based marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.
Why Choose LocationsXYZ?
LocationsXYZ is trusted by leading brands to unlock actionable business insights with our accurate and comprehensive spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI datasets. Request your free sample today and explore how we can help accelerate your business growth.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The regression analysis of predicting the degree of human impact by expert and non-expert groups, when the regression is split into 2 simultaneous models.
Facebook
Twitterhttps://services.cuzk.gov.cz/registry/codelist/ConditionsApplyingToAccessAndUse/copyrighthttps://services.cuzk.gov.cz/registry/codelist/ConditionsApplyingToAccessAndUse/copyright
The ArcGIS Server Service provides access to information on experts opinions of Czech Geological Survey (CGS). This expert opinions were drawn up by CGS district geologists and associated specialists according to the requirements of government authorities of the Czech Republic of all levels.
Facebook
TwitterThe Automated Geospatial Watershed Assessment (AGWA) tool is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to fully parameterize, execute, and spatially visualize results for the RHEM, KINEROS2, KINEROS-OPUS, SWAT2000, and SWAT2005 watershed runoff and erosion models. Accommodating novice to expert GIS users, it is designed to be used by watershed, water resource, land use, and resource managers and scientists investigating the hydrologic impacts of land-cover/land-use change in small watershed to basin-scale studies. AGWA is currently available as AGWA 1.5 for ArcView 3.x, AGWA 2.x for ArcGIS 9.x, and AGWA 3.X for ArcGIS 10.x. Planning and assessment in land and water resource management are evolving from simple, local-scale problems toward complex, spatially explicit regional ones. Such problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extensive data requirements and the difficult task of building input parameter files, however, have long represented an obstacle to the timely and cost-effective use of such complex models by resource managers. The USDA- ARS Southwest Watershed Research Center, in cooperation with the U.S. EPA Office of Research and Development Landscape Ecology Branch, the University of Arizona, and the University of Wyoming, has developed a GIS tool to facilitate this process. A geographic information system (GIS) provides the framework within which spatially-distributed data are collected and used to prepare model input files and evaluate model results. AGWA uses widely available standardized spatial datasets that can be obtained via the internet. The data are used to develop input parameter files for two watershed runoff and erosion models: KINEROS2 and SWAT. Resources in this dataset:Resource Title: AGWA - Automated Geospatial Watershed Assessment Tool. File Name: Web Page, url: https://www.tucson.ars.ag.gov/agwa/ Main tool web site
Facebook
TwitterMetadataThese data contain both proposed and installed export cables. The proposed cables show the developer’s current plans, but until installation occurs, these locations are subject to change. These preliminary data are being provided to help inform stakeholders of the intended location so they can provide feedback regarding the potential location of these cables. In most cases, the cables shown are the maximum proposed build out within the individual design envelope of the project. In some cases, more than one proposed layout is provided. If no specific configuration option is shown in the attributes, then all the locations are considered the preferred option. Regardless of which option is ultimately permitted, the placement and total number of cables built may vary from what is presented here. These data will be updated as new publicly available information is released. Data are provided by the lessee for project planning review and permitting uses.
Facebook
TwitterGISCorps quickly marshaled its members to build a nationwide map of COVID-19 testing sites.Key TakeawaysGISCorps rallies to provide quick, expert mapping help in times of crisis.Volunteers aggregate data on testing sites to create an authoritative national map.Additional map project memorializes victims and survivors of COVID-19._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Explore this resource to learn about the DWRe Area Specialist Program and identify primary contacts for each Planning Basin.
Facebook
TwitterThe National Channel Framework (NCF) is an enterprise Geographic Information System (eGIS) database providing information about congressionally authorized navigation channels maintained by the US Army Corps of Engineers. This service includes channel details based on district-managed GIS polygons rather than on CAD-based linework, and is maintained through the eHydro hydrographic survey application. Details include reaches, channel areas, quarters, centerlines, and stationing.
Facebook
TwitterThis vector tile layer is designed to support exporting small volumes of basemap tiles for offline use. This reference map includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority. See National Geographic Style for more details.Use this MapThis vector tile service supporting this layer will enable you to export a small number of tiles in a single request. This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use National Geographic Style.Service Information for DevelopersTo export tiles for National Geographic Style (for Export), you must use the instance of the World_Basemap_Export_v2 service hosted on basemaps.arcgis.com referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is optimized to minimize the size of the download for offline use. Due to this optimization, there are small differences between this layer and the display optimized World_Basemap_v2 service. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Facebook
TwitterHigh resolution land cover dataset for Virginia Beach, VA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3x3 square feet.
The primary sources used to derive this land cover layer were (1) NAIP 2008 imagery derived from the compressed county mosaic, (2) Normalized digital surface model (nDSM) for Virginia Beach, VA, generated from 2004 light detection and ranging (LiDAR) data representing a 2ft surface. Ancillary data sources used were GIS vector planimetrics layers containing buildings, roads, utility lines, and surface water, provided by the City of Virginia Beach to aid in classification. This land cover dataset is considered current as of November, 2009.
Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing.
No accuracy assessment was conducted, but the dataset was subject to a thorough manual quality control. 18194 corrections were made to the classification.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Tamalpais Lands Collaborative (One Tam; https://www.onetam.org/), the network of organizations that manage lands on Mount Tamalpais in Marin County, initiated the countywide mapping project with their interest in creating a seamless, comprehensive map depicting vegetation communities across the landscape. With support from their non-profit partner the Golden Gate National Parks Conservancy (https://www.parksconservancy.org/) One Tam was able to build a consortium to fund and implement the countywide fine scale vegetation map.Development of the Marin fine-scale vegetation map was managed by the Golden Gate National Parks Conservancy and staffed by personnel from Tukman Geospatial (https://tukmangeospatial.com/) Aerial Information Systems (AIS; http://www.aisgis.com/), and Kass Green and Associates. The fine-scale vegetation map effort included field surveys by a team of trained botanists. Data from these surveys, combined with older surveys from previous efforts, were analyzed by the California Native Plant Society (CNPS) Vegetation Program (https://www.cnps.org/vegetation) with support from the California Department of Fish and Wildlife Vegetation Classification and Mapping Program (VegCAMP; https://wildlife.ca.gov/Data/VegCAMP) to develop a Marin County-specific vegetation classification.High density lidar data was obtained countywide in the early winter of 2019 to support the project. The lidar point cloud, and many of its derivatives, were used extensively during the process of developing the fine-scale vegetation and habitat map. The lidar data was used in conjunction with optical data. Optical data used throughout the project included 6-inch resolution airborne 4-band imagery collected in the summer of 2018, as well as 6-inch imagery from 2014 and various dates of National Agriculture Imagery Program (NAIP) imagery.In 2019, a 26-class lifeform map was produced which serves as the foundation for the much more floristically detailed fine-scale vegetation and habitat map. The lifeform map was developed using expert systems rulesets in Trimble Ecognition®, followed by manual editing.In 2019, Tukman Geospatial staff and partners conducted countywide reconnaissance fieldwork to support fine-scale mapping. Field-collected data were used to train automated machine learning algorithms, which produced a fully automated countywide fine-scale vegetation and habitat map. Throughout 2020, AIS manually edited the fine-scale maps, and Tukman Geospatial and AIS went to the field for validation trips to inform and improve the manual editing process. In the spring of 2021, draft maps were distributed and reviewed by Marin County's community of land managers and by the funders of the project. Input from these groups was used to further refine the map. The countywide fine-scale vegetation map and related data products were made public in June 2021. In total, 107 vegetation classes were mapped with a minimum mapping size of one fifth to one acre, varying by class.Accuracy assessment plot data were collected in 2019, 2020, and 2021. Accuracy assessment results were compiled and analyzed in the summer of 2021. Overall accuracy of the lifeformmap is 95%. Overall accuracy of the fine-scale vegetation map is 77%, with an overall 'fuzzy' accuracy of 81%.The Marin County fine-scale vegetation map was designed for a broad audience for use at many floristic and spatial scales. At its most floristically resolute scale, the fine-scale vegetation map depicts the landscape at the National Vegetation Classification alliance level - which characterizes stands of vegetation generally by the dominant species present. This product is useful to managers interested in specific information about vegetation composition. For those interested in general land use and land cover, the lifeform map may be more appropriate. Tomake the information contained in the map accessible to the most users, the vegetation map is published as a suite of GIS deliverables available in a number of formats. Map products are being made available wherever possible by the project stakeholders, including the regional data portal Pacific Veg Map (http://pacificvegmap.org/data-downloads).
Facebook
TwitterUpdated and staged version of Nongame Specialists
Facebook
TwitterBolton & Menk, an engineering planning and consulting firm from the Midwestern United States has released a series of illustrated children’s books as a way of helping young people discover several different professions that typically do not get as much attention as other more traditional ones do.Topics of the award winning book series include landscape architecture, civil engineering, water resource engineering, urban planning and now Geographic Information Systems (GIS). The books are available free online in digital format, and easily accessed via a laptop, smart phone or tablet.The book Lindsey the GIS Specialist – A GIS Mapping Story Tyler Danielson, covers some the basics of what geographic information is and the type of work that a GIS Specialist does. It explains what the acronym GIS means, the different types of geospatial data, how we collect data, and what some of the maps a GIS Specialist creates would be used for.Click here to check out the GIS Specialist – A GIS Mapping Story e-book