7 datasets found
  1. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • oregonwaterdata.org
    • +6more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  2. a

    Heat Severity - USA 2023

    • giscommons-countyplanning.opendata.arcgis.com
    • hub.arcgis.com
    • +3more
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/TPL::heat-severity-usa-2023
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  3. n

    Africa FAO Major Infrastructure and Human Settlements (GIS Coverage)

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Africa FAO Major Infrastructure and Human Settlements (GIS Coverage) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2232849221-CEOS_EXTRA/1
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    New-ID: NBI18

    The Africa Major Infrastructure and Human Settlements Dataset

    Files: TOWNS2.E00 Code: 100022-002 ROADS2.E00 100021-002

    Vector Members: The E00 files are in Arc/Info Export format and should be imported with the Arc/Info command Import cover In-Filename Out-Filename

    The Africa major infrastructure and human settlements dataset form part of the UNEP/FAO/ESRI Database project that covers the entire world but focuses here on Africa. The maps were prepared by Environmental Systems Research Institute (ESRI), USA. Most data for the database were provided by the Soil Resources, Management and Conservation Service, Land and Water Development Division of the Food and Agriculture Organization (FAO), Italy. This dataset was developed in collaboration with the United Nations Environment Program (UNEP), Kenya. The base maps used were the UNESCO/FAO Soil Map of the world (1977) in Miller Oblated Stereographic projection, the DMA Global Navigation and Planning charts for Africa (various dates: 1976-1982) and the Rand-McNally, New International Atlas (1982). All sources were re-registered to the basemap by comparing known features on the basemap those of the source maps. The digitizing was done with a spatial resolution of 0.002 inches. The maps were then transformed from inch coordinates to latitude/longitude degrees. The transformation was done using an unpublished algorithm of the US Geological Survey and ESRI to create coverages for one-degree graticules. The Population Centers were selected based upon their inclusion in the list of major cities and populated areas in the Rand McNally New International Atlas Contact: UNEP/GRID-Nairobi, P.O. Box 30552 Nairobi, Kenya FAO, Soil Resources, Management and Conservation Service, 00100, Rome, Italy ESRI, 380 New York Street, Redlands, CA. 92373, USA The ROADS2 file shows major roads of the African continent The TOWNS2 file shows human settlements and airports for the African continent

    References:

    ESRI. Final Report UNEP/FAO World and Africa GIS data base (1984). Internal Publication by ESRI, FAO and UNEP

    FAO. UNESCO Soil Map of the World (1977). Scale 1:5000000. UNESCO, Paris

    Defence Mapping Agency. Global Navigation and Planning charts for Africa (various dates: 1976-1982). Scale 1:5000000. Washington DC.

    Grosvenor. National Geographic Atlas of the World (1975). Scale 1:850000. National Geographic Society Washington DC.

    DMA. Topographic Maps of Africa (various dates). Scale 1:2000000 Washington DC.

    Rand-McNally. The new International Atlas (1982). Scale 1:6,000,000. Rand McNally & Co.Chicago

    Source: FAO Soil Map of the World. Scale 1:5000000 Publication Date: Dec 1984 Projection: Miller Type: Points Format: Arc/Info export non-compressed Related Datasets: All UNEP/FAO/ESRI Datasets ADMINLL (100012-002) administrative boundries AFURBAN (100082) urban percentage coverage Comments: There is no outline of Africa

  4. a

    Sidebar

    • city-of-lawrenceville-arcgis-hub-lville.hub.arcgis.com
    Updated Sep 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2021). Sidebar [Dataset]. https://city-of-lawrenceville-arcgis-hub-lville.hub.arcgis.com/items/f6a143fb90c44d7b860f623f1a23c322
    Explore at:
    Dataset updated
    Sep 22, 2021
    Dataset authored and provided by
    esri_en
    Description

    Use the Sidebar template to include a set of tools and options that appear in a side panel next to the map. You can enable editing tools to allow users to add and update features in the map. Configure filters that app users can use to gain more information about your data. Include bookmarks to guide your users to important regions and add essential map tools for exploring the map. Examples: Showcase a detailed map of population data with supplementary text for further explanation. Allow data reviewers to investigate and update records with editing tools. Present public services in a map that your audience can filter for the types of services they need. Data requirements The Sidebar template has no specific data requirements. To use the Oriented imagery tool, the web map must have an oriented imagery layer. Key app capabilities Cover page - Include a cover page with custom text and logos to establish the purpose of the app. Edit tools - Provide options to add and update features in editable layers. Users can turn on snapping for more efficient and precise editing. Attribute filter - Configure map filter options that are available to app users. Bookmarks - Allow users to zoom and pan to a collection of preset extents that are saved in the map. Export - Print or export the search results or selected features as a .pdf, .jpg, or .png file that includes the pop-up content of returned features and an option to include the map. Measurement tools - Provide tools that measure distance and area and find and convert coordinates. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

  5. a

    Heat Severity - USA 2022

    • community-climatesolutions.hub.arcgis.com
    • giscommons-countyplanning.opendata.arcgis.com
    • +2more
    Updated Mar 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://community-climatesolutions.hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  6. a

    Legal Delta

    • cnra-gis-open-data-staging-cnra.hub.arcgis.com
    Updated May 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Delta Stewardship Council, a California State Agency (2024). Legal Delta [Dataset]. https://cnra-gis-open-data-staging-cnra.hub.arcgis.com/items/5fcdb214cbaa4ae98dd24532c65dd2e6
    Explore at:
    Dataset updated
    May 10, 2024
    Dataset authored and provided by
    Delta Stewardship Council, a California State Agency
    Area covered
    Description

    This layer illustrates the Sacramento-San Joaquin Delta boundary (version 2002.4). This is a duplicate layer to one available on the CNRA Open Data website. It is provided here because the REST service for the authoritative CNRA copy is occasionally down.It delineates the legal Delta established under the Delta Protection Act (Section 12220 of the Water Code), passed in 1959. This boundary file has been reviewed by a variety of relevant professionals and can be considered acceptable for mapping at 1:24000. The original legal boundary maps obtained from the Delta Protection Commission were compiled by DWR Land & Right of Way sometime in the early 1980s, with one revision made to the original maps in the vicinity of Point Pleasant.Additional notes: The exact accuracy is somewhat uncertain, but can be considered acceptable for mapping within 7.5 Minute USGS map accuracy standards (1:24000 scale). The original topographic maps containing the drawn Delta border were scanned from the Department of Water Resources. Images were registered to 1:24000 USGS DRG's in ArcView (ESRI) utilizing imagewarp extension. The Delta boundary was digitized from the registered images. The original legal boundary maps were based on the legal description in Section 12220 of the Water Code, with ambiguities in the Code addressed by the individuals involved in the mapping project at that time. One revision was made to the original maps in the vicinity of Point Pleasant, and is the only difference between this and the 4.2001 version of the legal Delta boundary Arc/INFO coverage.Published to DWR Spatial Data Library 2/21/2003. Published as an export to geoDB feature class output. Source is DWR Delta Levees Program. These data are distributed as part of the DWR Spatial Data Library. Please advise dataset administrator of any improvements or suggestions for these data, or if additional metadata can be contributed. The State of California, the Department of Water Resources, the Programs, and the individuals working in support of any of the preceding shall have no legal responsibility for providing data to the DWR Spatial Data Library, and shall have no responsibility for any errors or omissions, or for the use or results obtained from the use of this information. User acknowledges and accepts these terms upon receipt of display of any of the contents of any of the files associated with these data. Received from Chico State by DWR Delta Levees Program 5/31/2001. Converted from shapefile into coverage format, converted from Teale Albers into Geographic/NAD83, & rebuilt topology using ArcGIS 8.2, double-precision, by Joel Dudas, DWR Delta Levees Program, 2/2003. The revision between the 4.2001 and the 4.2002 versions reflects a change in the vicinity of Point Pleasant in the east Delta, as shown on modified Delta Protection Commission maps. The line was moved south to the township boundary line, as appropriate, using ArcGIS 8.1 software. During 2001 & early 2002 every effort was made to identify any errors in the underlying data sources, including water district, reclamation district, roads, etc. boundaries. While certain features were not able to be 100% certified, this coverage can be considered to be as accurate based on all of the information available at this time. These uncertainties principally involve obscurity in some of the ancestral source data.

  7. a

    Chatham Building Flood Risk 2015

    • informationhub-chathamncgis.hub.arcgis.com
    Updated May 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chatham County GIS Portal (2025). Chatham Building Flood Risk 2015 [Dataset]. https://informationhub-chathamncgis.hub.arcgis.com/maps/8215434213af4513891474c3cf93a514
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    Chatham County GIS Portal
    Area covered
    Description

    A Hosted Feature Service representing Chatham County Flood Risk to Building Footprints in 2015. This Map is used in the Flood Footprints Map, and the Flood Risk Swipe Instant Application for the Chatham County Performance Hub.Analytical Steps to Produce Data:1. Select By Location: All Building Footprints that "intersect" Flood Hazard Areas2. Export Footprint Selection to FC, then convert Polygons to Points (Feature to Point Tool)3. Calculate Number of Footprint Points within Each Census Tract & Append Data to Tracts (Select by Location or Summarize Within)

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
Organization logo

National Hydrography Dataset Plus Version 2.1

Explore at:
43 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 16, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Search
Clear search
Close search
Google apps
Main menu