Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.
In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.
Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WSDOT template for Esri file geodatabase point feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.
The Washington State Surface Geology Map scale at a scale of 1:24,000 geodatabase was made accessible through the Washington State Department of Natural Resources, Division of Geology and Earth Resources. The data are provided in ESRI ArcGIS 10.0 file geodatabase format (see Read Me file). The projection is in Lambert Conformal Conic, NAD83 HARN datum. Data available for download include:- One ESRI ArcGIS 10.0 geodatabase, consisting of a set of 11 feature classes, 7 relationship classes, and one geodatabase table.- Metadata for each feature class, in both XML and HTML formats (for ease of reading outside of GIS software)- One shapefile depicting the outline of Washington State.- One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap- One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in an ArcGIS viewing application- One Geologic Map Codes document (PDF) defining the symbology used in the map.- The README file These digital data and metadata are provided as is, as available, and with all faults basis. Neither Department of Natural Resources nor any of its officials and employees makes any warranty of any kind for this information, express or implied, including but not limited to any warranties of merchantability or fitness for a particular purpose, nor shall the distribution of this information constitute any warranty. This resource was provided by the Washington State Department of Natural Resources, Division of Geology and Earth Resources and made available for distribution through the National Geothermal Data System.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService CSV Shapefile GeoJSON KML https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_ActivityFactsCommonAttributes_01/MapServer/0 Geodatabase Download Shapefile Download For complete information, please visit https://data.gov.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Ground response--GIS data, June 2010. Downloadable GIS data includes: One ESRI ArcGIS 9.3 geodatabase, consisting of a set of 4 feature classes; Metadata for each feature class, in HTML format (for ease of reading outside of GIS software); One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap; One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in the free ArcGIS Explorer (as well as ArcMap); README file
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WSDOT template for Esri file geodatabase polygon feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.
This ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This FeatureClass is one of a set of FeatureClasses derived from our main FeatureClass (STREETS), which were created to display information related to our County's streets. This set of derivative products includes the following FeatureClasses: An Arc FeatureClass of Miami-Dade County streets with seamless address ranges. An Arc FeatureClass of Miami-Dade County streets with actual address ranges. An Arc FeatureClass of Miami-Dade County streets in a Coverage Structure. A Polygon FeatureClass of Miami-Dade County streets created from the street base layer using a process called 'buffer'. It was designed for cartographic display purposes and does not have attributes.Updated: Weekly-Sat
This dataset contains the recreation opportunity information that the Forest Service collects through the Recreation Portal and shares with the public on https://www.recreation.gov, the Forest Service World Wide Web pages (https://www.fs.usda.gov/) and the Interactive Visitor Map. This recreation data contains detailed descriptions of recreational sites, areas, activities & facilities. This published dataset consists of one point feature class for recreational areas, one spatial view and three related tables such as activities, facilities & rec area advisories. The purpose of each related table is described below RECAREAACTIVITIES: This related table contains information about the activities that are associated with the rec area.RECAREAFACILITIES: This related table contains information about the amenities that are associated with the rec area. RECAREAADVISORIES: This table contains events, news, alerts and warnings that are associated with the rec area.RECAREAACTIVITIES_V: This spatial view/feature class is generated by joining the RECAREAACTIVITIES table to the RECREATION OPPORTUNITIES Feature Class. Please note that the RECAREAID is the unique identifier present in point feature class and in the related tables as well. The RECAREAID is used as foreign key to access relate records.This published data is updated nightly from an XML feed maintained by the CIO Rec Portal team. This data is intended for public use and distribution. Metadata
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset represents cellular tower locations as recorded by the Federal Communications Commission This feature class serves as base information for use in GIS systems for general planning, analytical, and research purposes. It is not intended for engineering work or to legally define FCC licensee data or FCC market boundaries. The material in these data and text files are provided as-is. The FCC disclaims all warranties with regard to the contents of these files, including their fitness. In no event shall the FCC be liable for any special, indirect, or consequential damages whatsoever resulting from loss or use, data or profits, whether in connection with the use or performance of the contents of these files, action of contract, negligence, or other action arising out of, or in connection with the use of the contents of these files. It is known that there are some errors in the licensing information - Latitude, Longitude and Ground Elevation data as well as frequency assignment data from which these MapInfo files were generated.
This Quarter Section feature class depicts PLSS Second Divisions . PLSS townships are subdivided in a spatial hierarchy of first, second, and third division. These divisions are typically aliquot parts ranging in size from 640 acres to 160 to 40 acres, and subsequently all the way down to 2.5 acres. The data in this feature class was translated from the PLSSSecondDiv feature class in the original production data model, which defined the second division for a specific parcel of land. Metadata
LouVelo is a docked bikeshare program owned by Louisville Metro Government and operated by Cyclehop since May of 2017. The System includes Approximately 250 bikes, 25 Docked Stations in Louisville, and an additional 3 stations owned and operated by the City of Jeffersonville in Partnership with Cyclehop. These data will be updated on a monthly basis to show monthly trends in ridership along with general patterns of use with pick up and drop off location data. These data are updated and maintained for use in the Louisville Metro Open Data Portal LouVelo Dashboard to show ridership for the entirety of the program. Some stations have been relocated since the programs founding. For up to date information on dock locations please view the system map on the LouVelo website. This dashboard is maintained by Louisville Metro Public Works.For any questions please contact:James GrahamMobility CoordinatorLouisville Metro Public WorksDivision of Transportation444 S. 5th, St, Suite 400Louisville, KY 40202(502) 574-6473james.graham@louisvilleky.govFor more information about the LouVelo bikeshare program please visit their website.
The Range Vegetation Improvement feature class depicts the area planned and accomplished areas treated as a part of the Range Vegetation Improvement program of work, funded through the budget allocation process and reported through the Forest Service Activity Tracking System (FACTS) database within the Natural Resource Manager (NRM) suite of applications. Activities are self-reported by Forest Service Units. Metadata
The Trails Layer is designed to provide information about National Forest System trail locations and characteristics to the public. When fully realized, it will describe trail locations, basic characteristics of the trail, and where and when various trail uses are prohibited, allowed and encouraged. Because the data readiness varies between Forests, each Forest will approve which level of attribute subset are published for that forest. Forests can provide no information or one of three attribute subsets describing trails. The attribute subsets include TrailNFS_Centerline which includes the location and trail name and number; TrailNFS_Basic which adds information about basic trail characteristics; and TrailNFS_Mgmt which adds information about where and when users are prohibited, allowed, and encouraged. When a Forest chooses to provide the highest attribute subset, TrailNFS_Mgmt, these attributes must be consistent with the Forest's published Motorized Vehicle Use Map (MVUM). Metadata for the individual Forest feature classes used to compile this feature class are available at data.fs.usda.gov/geodata/edw/dir_trails.php. Metadata
Sixty-seven maps from Indian Land Cessions in the United States, compiled by Charles C. Royce and published as the second part of the two-part Eighteenth Annual Report of the Bureau of American Ethnology to the Secretary of the Smithsonian Institution, 1896-1897 have been scanned, georeferenced in JPEG2000 format, and digitized to create this feature class of cession maps. The mapped cessions and reservations included in the 67 maps correspond to entries in the Schedule of Indian Land Cessions, indicating the number and location of each cession by or reservation for the Indian tribes from the organization of the Federal Government to and including 1894, together with descriptions of the tracts so ceded or reserved, the date of the treaty, law or executive order governing the same, the name of the tribe or tribes affected thereby, and historical data and references bearing thereon, as set forth in the subtitle of the Schedule. Go to this URL for full metadata: https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.TRIBALCEDEDLANDS.xml Each Royce map was georeferenced against one or more of the following USGS 1:2,000,000 National Atlas Feature Classes contained in \NatlAtlas_USGS.gdb: cities_2mm, hydro_ln_2mm, hydro_pl_2mm, plss_2mm, states_2mm. Cessions were digitized as a file geodatabase (GDB) polygon feature class, projected as NAD83 USA_Contiguous_Lambert_Conformal_Conic, which is the same projection used to georeference the maps. The feature class was later reprojected to WGS 1984 Web Mercator (auxiliary sphere) to optimize it for the Tribal Connections Map Viewer. Polygon boundaries were digitized as to not deviate from the drawn polygon edge to the extent that space could be seen between the digitized polygon and the mapped polygon at a viewable scale. Topology was maintained between coincident edges of adjacent polygons. The cession map number assigned by Royce was entered into the feature class as a field attribute. The Map Cession ID serves as the link referencing relationship classes and joining additional attribute information to 752 polygon features, to include the following: 1. Data transcribed from Royce's Schedule of Indian Land Cessions: a. Date(s), in the case of treaties, the date the treaty was signed, not the date of the proclamation; b. Tribe(s), the tribal name(s) used in the treaty and/or the Schedule; and c. Map Name(s), the name of the map(s) on which a cession number appears; 2. URLs for the corresponding entry in the Schedule of Indian Land Cessions (Internet Archive) for each unique combination of a Date and reference to a Map Cession ID (historical references in the Schedule are included); 3. URLs for the corresponding treaty text, including the treaties catalogued by Charles J. Kappler in Indian Affairs: Laws and Treaties (HathiTrust Digital Library), executive order or other federal statute (Library of Congress and University of Georgia) identified in each entry with a reference to a Map Cession ID or IDs; 4. URLs for the image of the Royce map(s) (Library of Congress) on which a given cession number appears; 5. The name(s) of the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text, as well as the name of the present-day Indian tribe or tribes; and 6. The present-day states and counties included wholly or partially within a Map Cession boundary. During the 2017-2018 revision of the attribute data, it was noted that 7 of the Cession Map IDs are missing spatial representation in the Feature Class. The missing data is associated with the following Cession Map IDs: 47 (Illinois 1), 65 (Tennessee and Bordering States), 128 (Georgia), 129 (Georgia), 130 (Georgia), 543 (Indian Territory 3), and 690 (Iowa 2), which will be updated in the future. This dataset revises and expands the dataset published in 2015 by the U.S. Forest Service and made available through the Tribal Connections viewer, the Forest Service Geodata Clearinghouse, and Data.gov. The 2018 dataset is a result of collaboration between the Department of Agriculture, U.S. Forest Service, Office of Tribal Relations (OTR); the Department of the Interior, National Park Service, National NAGPRA Program; the U.S. Environmental Protection Agency, Office of International and Tribal Affairs, American Indian Environmental Office; and Dr. Claudio Saunt of the University of Georgia. The Forest Service and Dr. Saunt independently digitized and georeferenced the Royce cession maps and developed online map viewers to display Native American land cessions and reservations. Dr. Saunt subsequently undertook additional research to link Schedule entries, treaty texts, federal statutes and executive orders to cession and reservation polygons, which he agreed to share with the U.S. Forest Service. OTR revised the data, linking the Schedule entries, treaty texts, federal statues and executive orders to all 1,172 entries in the attribute table. The 2018 dataset has incorporated data made available by the National NAGPRA Program, specifically the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text and the name of the present-day Indian tribe or tribes, as well as the present-day states and counties included wholly or partially within a Map Cession boundary. This data replaces in its entirety the National NAGPRA data included in the dataset published in 2015. The 2015 dataset incorporated data presented in state tables compiled from the Schedule of Indian Land Cessions by the National NAGPRA Program. In recent years the National NAGPRA Program has been working to ensure the accuracy of this data, including the reevaluation of the present-day Indian tribes and the provision of references for their determinations. Changes made by the OTR have not been reviewed or approved by the National NAGPRA Program. The Forest Service will continue to collaborate with other federal agencies and work to improve the accuracy of the data included in this dataset. Errors identified since the dataset was published in 2015 have been corrected, and we request that you notify us of any additional errors we may have missed or that have been introduced. Please contact Rebecca Hill, Policy Analyst, U.S. Forest Service, Office of Tribal Relations, at rebeccahill@fs.usda.gov with any questions or concerns with regard to the data included in this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.