The Sonoma County fine scale vegetation and habitat map is an 83-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. This layer file is just to be used for symbology - no spatial data is included. For the spatial data, download the veg map layer package, file geodatabase, or shapefile. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tDClass definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8). The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels.The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary.The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).
World Countries is a detailed dataset of country level boundaries which can be used at both large and small scales. It has been designed to be used as a basemap and includes an additional Disputed Boundaries layer that can be used to edit boundaries to fit a users needs and view of the political world.
Included are attributes for local and official names and country codes, along with continent and display fields. Particularly useful are the Land_Type and Land_Rank fields which separate polygons based on their size. These attributes can be used for rendering at different scales by providing the ability to turn off small islands which may clutter small scale views.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Colonial National Historical Park to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Colonial National Historical Park map was assigned to one of forty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained Colonial National Historical Park in May 2003. The mapping boundary includes lands under a scenic easement at Swanns Point and it excludes the Cheatham Annex, an area that returned to US Navy ownership in February 2004. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Petersburg National Battlefield to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Petersburg National Battlefield map was assigned to one of twenty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained from Petersburg National Battlefield in May 2006. Spatial data depicting the locations of earthworks was obtained from the park and used to identify polygons of the cultural map classes Open Earthworks and Forested Earthworks. One map class used to attribute polygons combines two similar associations that, in some circumstances, are difficult to distinguish in the field. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment. Twenty map classes were used in the vegetation map for Petersburg National Battlefield. Map classes are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system.
The MassDEP Wetlands dataset comprises two ArcGIS geodatabase feature classes:The WETLANDSDEP_POLY layer contains polygon features delineating mapped wetland resource areas and attribute codes indicating wetland type.The WETLANDSDEP_ARC layer was generated from the polygon features and contains arc attribute coding based on the adjacent polygons as well as arcs defined as hydrologic connections.Together these statewide layers enhance and replace the original MassDEP wetlands layers, formerly known as DEP Wetlands (1:12,000). It should be noted that these layers provide a medium-scale representation of the wetland areas of the state and are for planning purposes only. Wetlands boundary determination for other purposes, such as the Wetlands Protection Act MA Act M.G.L. c. 131 or local bylaws must use the relevant procedures and criteria.The original MassDEP wetlands mapping project was based on the photo-interpretation of 1:12,000, stereo color-infrared (CIR) photography, captured between 1990 and 2000, and included field verification by the MassDEP Wetlands Conservancy Program (WCP). In 2007 the MassDEP WCP began a statewide effort to assess and where necessary update the original wetlands data. The MassDEP WCP used ESRI ArcGIS Desktop software, assisted by the PurVIEW Stereo Viewing extension, to evaluate and update the original wetlands features based on photo-interpretation of 0.5m, (1:5,000) digital stereo CIR imagery statewide, captured in April 2005. No field verification was conducted on this updated 2005 wetlands data.The 2005 WETLANDSDEP_POLY layer includes polygon features that distinguish it from its predecessor by overall changes in size and shape. In addition, new polygons have been created and original ones deleted. Many of the polygons, however, remain the same as in the original layer. All changes have been made according to the techniques described below. For the purpose of cartographic continuity, a small number of coastal polygons outside the state boundary where added based on data provided by the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA).The 2005 WETLANDSDEP_ARC layer was generated to support map display and was designed to cartographically enhance the rendering of wetland features on a base map. Arc features in this layer were generated from the wetland polygons and coding (ARC_CODE) was assigned based on the adjacent polygon types. Hydrologic connection features (ARC_CODE = 7) were then added. Where delineated, these arc features indicate an observed hydrologic connection to or between wetland polygons. Although efforts were made to be comprehensive and thorough in mapping hydrologic connections, due to the limitations of aerial photo-interpretation some areas may have been missed.The types of updates made to the original wetland features include alteration, movement/realignment and reclassification. In some cases original wetland areas have been deleted and new areas have been added. Updates to original wetland features resulted from the following factors: changes in the natural environment due to human activity or natural causes; advances in the field of remote sensing, allowing for more refined mapping.Edit changes to the original wetland data include:Addition of new wetland and hydrologic connection featuresAppending (expansion or realignment) of existing (original) wetland and hydrologic connection featuresReclassification of wetlands features, due to change in wetlands environment from the original classificationMovement (or shifting) of original wetland features to better match the source imageryDeletion of original wetland or hydrologic connection features due to changes in wetlands environment or inconsistency with mapping criteria.Please note that although efforts were made to be comprehensive and thorough in the evaluation and mapping of statewide wetland resources some areas of the state may have been missed. Many of the wetland and hydrologic connection features remain the same as in the original data. The polygon attribute SOURCE_SCALE may be used to identify areas that have been altered from the original wetlands. The SOURCE_SCALE code 5000 indicates an updated wetland area. The SOURCE_SCALE code 12000 indicates an unaltered, original wetland polygon.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Napa County has used a 2004 edition vegetation map produced using the Manual of California Vegetation classification system (Thorne et al. 2004) as one of the input layers for land use decision and policy. The county decided to update the map because of its utility. A University of California, Davis (UCD) group was engaged to produce the map. The earlier map used black and white digital orthophoto quadrangles from 1993, with a pixel resolution of 3 meters. This image was delineated using a heads up digitization technique produced by ASI (Aerial Services Incorporated). The resulting polygons were the provided vegetation and landcover attributes following the classification system used by California State Department of Fish and Wildlife mappers in the Manual of California Vegetation. That effort included a brief field campaign in which surveyors drove accessible roads and verified or corrected the dominant vegetation of polygons adjacent to roadways or visible using binoculars. There were no field relevé or rapid assessment plots conducted. This update version uses a 2016 edition of 1 meter color aerial imagery taken by the National Agriculture Imagery Program (NAIP) as the base imagery. In consultation with the county we decided to use similar methods to the previous mapping effort, in order to preserve the capacity to assess change in the county over time. This meant forgoing recent data and innovations in remote sensing such as the use LiDAR and Ecognition’s segmentation of imagery to delineate stands, which have been recently used in a concurrent project mapping of Sonoma County. The use of such technologies would have made it more difficult to track changes in landcover, because differences between publication dates would not be definitively attributable to either actual land cover change or to change in methodology. The overall cost of updating the map in the way was approximately 20% of the cost of the Sonoma vegetation mapping program.Therefore, we started with the original map, and on-screen inspections of the 2004 polygons to determine if change had occurred. If so, the boundaries and attributes were modified in this new edition of the map. We also used the time series of imagery available on Google Earth, to further inspect many edited polygons. While funding was not available to do field assessments, we incorporated field expertise and other map data from four projects that overlap with parts of Napa Count: the Angwin Experimental Forest; a 2014 vegetation map of the Knoxville area; agricultural rock piles were identified by Amber Manfree; and parts of a Sonoma Vegetation Map that used 2013 imagery.The Angwin Experimental Forest was mapped by Peter Lecourt from Pacific Union College. He identified several polygons of redwoods in what are potentially the eastern-most extent of that species. We reviewed those polygons with him and incorporated some of the data from his area into this map.The 2014 Knoxville Vegetation map was developed by California Department of Fish and Wildlife. It was made public in February of 2019, close to the end of this project. We reviewed the map, which covers part of the northeast portion of Napa County. We incorporated polygons and vegetation types for 18 vegetation types including the rare ones, we reviewed and incorporated some data for another 6 types, and we noted in comments the presence of another 5 types. There is a separate report specifically addressing the incorporation of this map to our map.Dr Amber Manfree has been conducting research on fire return intervals for parts of Napa County. In her research she identified that large piles of rocks are created when vineyards are put in. These are mapable features. She shared the locations of rock piles she identified, which we incorporated into the map. The Sonoma Vegetation Map mapped some distance into the western side of Napa County. We reviewed that map’s polygons for coast redwood. We then examined our imagery and the Google imagery to see if we could discern the whorled pattern of tree branches. Where we could, we amended or expanded redwood polygons in our map.The Vegetation classification systems used here follows California’s Manual of California Vegetation and the National Vegetation Classification System (MCV and NVCS). We started with the vegetation types listed in the 2004 map. We predominantly use the same set of species names, with modifications/additions particularly from the Knoxville map. The NVCS uses Alliance and Association as the two most taxonomically detailed levels. This map uses those levels. It also refers to vegetation types that have not been sampled in the field and that has 3-6 species and a site descriptor as Groups, which is the next more general level in the NVCS classification. We conducted 3 rounds of quality assessment/quality control exercises.
The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8) The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).
Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
This intersection points feature class represents current intersections in the City of Los Angeles. Few intersection points, named pseudo nodes, are used to split the street centerline at a point that is not a true intersection at the ground level. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most current geographic information of the public right of way. The right of way information is available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works.Intersection layer was created in geographical information systems (GIS) software to display intersection points. Intersection points are placed where street line features join or cross each other and where freeway off- and on-ramp line features join street line features. The intersection points layer is a feature class in the LACityCenterlineData.gdb Geodatabase dataset. The layer consists of spatial data as a point feature class and attribute data for the features. The intersection points relates to the intersection attribute table, which contains data describing the limits of the street segment, by the CL_NODE_ID field. The layer shows the location of the intersection points on map products and web mapping applications, and the Department of Transportation, LADOT, uses the intersection points in their GIS system. The intersection attributes are used in the Intersection search function on BOE's web mapping application NavigateLA. The intersection spatial data and related attribute data are maintained in the Intersection layer using Street Centerline Editing application. The City of Los Angeles Municipal code states, all public right-of-ways (roads, alleys, etc) are streets, thus all of them have intersections. List of Fields:Y: This field captures the georeferenced location along the vertical plane of the point in the data layer that is projected in Stateplane Coordinate System NAD83. For example, Y = in the record of a point, while the X = .CL_NODE_ID: This field value is entered as new point features are added to the edit layer, during Street Centerline application editing process. The values are assigned automatically and consecutively by the ArcGIS software first to the street centerline spatial data layer, then the intersections point spatial data layer, and then the intersections point attribute data during the creation of new intersection points. Each intersection identification number is a unique value. The value relates to the street centerline layer attributes, to the INT_ID_FROM and INT_ID_TO fields. One or more street centerline features intersect the intersection point feature. For example, if a street centerline segment ends at a cul-de-sac, then the point feature intersects only one street centerline segment.X: This field captures the georeferenced location along the horizontal plane of the point in the data layer that is projected in Stateplane Coordinate System NAD83. For example, X = in the record of a point, while the Y = .ASSETID: User-defined feature autonumber.USER_ID: The name of the user carrying out the edits.SHAPE: Feature geometry.LST_MODF_DT: Last modification date of the polygon feature.LAT: This field captures the Latitude in deciaml degrees units of the point in the data layer that is projected in Geographic Coordinate System GCS_North_American_1983.OBJECTID: Internal feature number.CRTN_DT: Creation date of the polygon feature.TYPE: This field captures a value for intersection point features that are psuedo nodes or outside of the City. A pseudo node, or point, does not signify a true intersection of two or more different street centerline features. The point is there to split the line feature into two segments. A pseudo node may be needed if for example, the Bureau of Street Services (BSS) has assigned different SECT_ID values for those segments. Values: • S - Feature is a pseudo node and not a true intersection. • null - Feature is an intersection point. • O - Intersection point is outside of the City of LA boundary.LON: This field captures the Longitude in deciaml degrees units of the point in the data layer that is projected in Geographic Coordinate System GCS_North_American_1983.
This dataset is a modified version of the FWS developed data depicting “Highly Important Landscapes”, as outlined in Memorandum FWS/AES/058711 and provided to the Wildlife Habitat Spatial analysis Lab on October 29th 2014. Other names and acronyms used to refer to this dataset have included: Areas of Significance (AoSs - name of GIS data set provided by FWS), Strongholds (FWS), and Sagebrush Focal Areas (SFAs - BLM). The BLM will refer to these data as Sagebrush Focal Areas (SFAs). Data were provided as a series of ArcGIS map packages which, when extracted, contained several datasets each. Based on the recommendation of the FWS Geographer/Ecologist (email communication, see data originator for contact information) the dataset called “Outiline_AreasofSignificance” was utilized as the source for subsequent analysis and refinement. Metadata was not provided by the FWS for this dataset. For detailed information regarding the dataset’s creation refer to Memorandum FWS/AES/058711 or contact the FWS directly. Several operations and modifications were made to this source data, as outlined in the “Description” and “Process Step” sections of this metadata file. Generally: The source data was named by the Wildlife Habitat Spatial Analysis Lab to identify polygons as described (but not identified in the GIS) in the FWS memorandum. The Nevada/California EIS modified portions within their decision space in concert with local FWS personnel and provided the modified data back to the Wildlife Habitat Spatial Analysis Lab. Gaps around Nevada State borders, introduced by the NVCA edits, were then closed as was a large gap between the southern Idaho & southeast Oregon present in the original dataset. Features with an area below 40 acres were then identified and, based on FWS guidance, either removed or retained. Finally, guidance from BLM WO resulted in the removal of additional areas, primarily non-habitat with BLM surface or subsurface management authority. Data were then provided to each EIS for use in FEIS development. Based on guidance from WO, SFAs were to be limited to BLM decision space (surface/sub-surface management areas) within PHMA. Each EIS was asked to provide the limited SFA dataset back to the National Operations Center to ensure consistent representation and analysis. Returned SFA data, modified by each individual EIS, was then consolidated at the BLM’s National Operations Center retaining the three standardized fields contained in this dataset.Several Modifications from the original FWS dataset have been made. Below is a summary of each modification.1. The data as received from FWS: 16,514,163 acres & 1 record.2. Edited to name SFAs by Wildlife Habitat Spatial Analysis Lab:Upon receipt of the “Outiline_AreasofSignificance” dataset from the FWS, a copy was made and the one existing & unnamed record was exploded in an edit session within ArcMap. A text field, “AoS_Name”, was added. Using the maps provided with Memorandum FWS/AES/058711, polygons were manually selected and the “AoS_Name” field was calculated to match the names as illustrated. Once all polygons in the exploded dataset were appropriately named, the dataset was dissolved, resulting in one record representing each of the seven SFAs identified in the memorandum.3. The NVCA EIS made modifications in concert with local FWS staff. Metadata and detailed change descriptions were not returned with the modified data. Contact Leisa Wesch, GIS Specialist, BLM Nevada State Office, 775-861-6421, lwesch@blm.gov, for details.4. Once the data was returned to the Wildlife Habitat Spatial Analysis Lab from the NVCA EIS, gaps surrounding the State of NV were closed. These gaps were introduced by the NVCA edits, exacerbated by them, or existed in the data as provided by the FWS. The gap closing was performed in an edit session by either extending each polygon towards each other or by creating a new polygon, which covered the gap, and merging it with the existing features. In addition to the gaps around state boundaries, a large area between the S. Idaho and S.E. Oregon SFAs was filled in. To accomplish this, ADPP habitat (current as of January 2015) and BLM GSSP SMA data were used to create a new polygon representing PHMA and BLM management that connected the two existing SFAs.5. In an effort to simplify the FWS dataset, features whose areas were less than 40 acres were identified and FWS was consulted for guidance on possible removal. To do so, features from #4 above were exploded once again in an ArcMap edit session. Features whose areas were less than forty acres were selected and exported (770 total features). This dataset was provided to the FWS and then returned with specific guidance on inclusion/exclusion via email by Lara Juliusson (lara_juliusson@fws.gov). The specific guidance was:a. Remove all features whose area is less than 10 acresb. Remove features identified as slivers (the thinness ratio was calculated and slivers identified by Lara Juliusson according to https://tereshenkov.wordpress.com/2014/04/08/fighting-sliver-polygons-in-arcgis-thinness-ratio/) and whose area was less than 20 acres.c. Remove features with areas less than 20 acres NOT identified as slivers and NOT adjacent to other features.d. Keep the remainder of features identified as less than 40 acres.To accomplish “a” and “b”, above, a simple selection was applied to the dataset representing features less than 40 acres. The select by _location tool was used, set to select identical, to select these features from the dataset created in step 4 above. The records count was confirmed as matching between the two data sets and then these features were deleted. To accomplish “c” above, a field (“AdjacentSH”, added by FWS but not calculated) was calculated to identify features touching or intersecting other features. A series of selections was used: first to select records 6. Based on direction from the BLM Washington Office, the portion of the Upper Missouri River Breaks National Monument (UMRBNM) that was included in the FWS SFA dataset was removed. The BLM NOC GSSP NLCS dataset was used to erase these areas from #5 above. Resulting sliver polygons were also removed and geometry was repaired.7. In addition to removing UMRBNM, the BLM Washington Office also directed the removal of Non-ADPP habitat within the SFAs, on BLM managed lands, falling outside of Designated Wilderness’ & Wilderness Study Areas. An exception was the retention of the Donkey Hills ACEC and adjacent BLM lands. The BLM NOC GSSP NLCS datasets were used in conjunction with a dataset containing all ADPP habitat, BLM SMA and BLM sub-surface management unioned into one file to identify and delete these areas.8. The resulting dataset, after steps 2 – 8 above were completed, was dissolved to the SFA name field yielding this feature class with one record per SFA area.9. Data were provided to each EIS for use in FEIS allocation decision data development.10. Data were subset to BLM decision space (surface/sub-surface) within PHMA by each EIS and returned to the NOC.11. Due to variations in field names and values, three standardized fields were created and calculated by the NOC:a. SFA Name – The name of the SFA.b. Subsurface – Binary “Yes” or “No” to indicated federal subsurface estate.c. SMA – Represents BLM, USFS, other federal and non-federal surface management 12. The consolidated data (with standardized field names and values) were dissolved on the three fields illustrated above and geometry was repaired, resulting in this dataset.
The Wildland Fire Interagency Geospatial Services (WFIGS) Group provides authoritative geospatial data products under the interagency Wildland Fire Data Program. Hosted in the National Interagency Fire Center ArcGIS Online Organization (The NIFC Org), WFIGS provides both internal and public facing data, accessible in a variety of formats.This service includes perimeters for wildland fire incidents that meet the following criteria:
Categorized in the IRWIN (Integrated Reporting of Wildland Fire Information) integration service as a valid Wildfire (WF), Prescribed Fire (RX), or Incident Complex (CX) record with a Fire Discovery Date in the year 2021
Is not "quarantined" in IRWIN due to potential conflicts with other records
Attribution of the source polygon is set to a Feature Access of Public, a Feature Status of Approved, and an Is Visible setting of Yes
Perimeters are not available for every incident. For a complete set of features that meet the same IRWIN criteria, see the 2021 Wildland Fire Locations to Date service.
No "fall-off" rules are applied to this service.
Criteria were determined by an NWCG Geospatial Subcommittee task group.
Data are refreshed every 5 minutes. Changes in the perimeter source may take up to 15 minutes to display.
Perimeters are pulled from multiple sources with rules in place to ensure the most current or most authoritative shape is used.Warning: Please refrain from repeatedly querying the service using a relative date range. This includes using the “(not) in the last” operators in a Web Map filter and any reference to CURRENT_TIMESTAMP. This type of query puts undue load on the service and may render it temporarily unavailable.
Attributes and their definitions can be found below. More detail about the NWCG Wildland Fire Event Polygon standard can be found here.
Attributes:
Incident Name (Polygon)
The Incident Name from the source polygon.
Feature Category
Type of wildland fire perimeter set for the source polygon.
Map Method
Controlled vocabulary to define how the source polygon was derived. Map Method may help define data quality.
GIS Acres
User-calculated acreage on the source polygon.
Polygon Create Date
System field. Time stamp for the source polygon feature creation.
Polygon Modified Date
System field. Time stamp for the most recent edit to the source polygon feature.
Polygon Collection Date Time
Date time for the source polygon feature collection.
Acres Auto Calculated
Automated calculation of the source polygon acreage.
Polygon Source
Data source of the perimeter geometry.{Year} NIFS: Annual National Incident Feature ServiceFFP: Final Fire Perimeter Service (Certified Perimeters)
ABCD Misc
A FireCode used by USDA FS to track and compile cost information for emergency initial attack fire suppression expenditures. for A, B, C & D size class fires on FS lands.
ADS Permission State
Indicates the permission hierarchy that is currently being applied when a system utilizes the UpdateIncident operation.
IRWIN Archived On
A date set by IRWIN that indicates when an incident's data has met the rules defined for the record to become part of the historical fire records rather than an operational incident record. The value will be set the current date/time if any of the following criteria are met: 1. ContainmentDataTime or ControlDateTime or FireOutDateTime or ModifiedOnDateTime > 12 months from the current DateTime2. FinalFireReportDate is not null and ADSPermissionState is 'certified'.
Calculated Acres
A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire. More specifically, the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands. The minimum size must be 0.1.
Containment Date Time
The date and time a wildfire was declared contained.
Control Date Time
The date and time a wildfire was declared under control.
Created By System
ArcGIS Server Username of system that created the IRWIN Incident record.
IRWIN Created On Date Time
Date/time that the IRWIN Incident record was created.
IRWIN Daily Acres
A measure of acres reported for a fire. More specifically, the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands. The minimum size must be 0.1.
Discovery Acres
An estimate of acres burning upon the discovery of the fire. More specifically when the fire is first reported by the first person that calls in the fire. The estimate should include number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.
Dispatch Center ID
A unique identifier for a dispatch center responsible for supporting the incident.
Final Fire Report Approved By Title
The title of the person that approved the final fire report for the incident.
Final Fire Report Approved By Unit
NWCG Unit ID associated with the individual who approved the final report for the incident.
Final Fire Report Approved Date
The date that the final fire report was approved for the incident.
Fire Behavior General
A general category describing the manner in which the fire is currently reacting to the influences of fuel, weather, and topography.
Fire Behavior General 1
A more specific category further describing the general fire behavior (manner in which the fire is currently reacting to the influences of fuel, weather, and topography).
Fire Behavior General 2
A more specific category further describing the general fire behavior (manner in which the fire is currently reacting to the influences of fuel, weather, and topography).
Fire Behavior General 3
A more specific category further describing the general fire behavior (manner in which the fire is currently reacting to the influences of fuel, weather, and topography).
Fire Cause
Broad classification of the reason the fire occurred identified as human, natural or unknown.
Fire Cause General
Agency or circumstance which started a fire or set the stage for its occurrence; source of a fire's ignition. For statistical purposes, fire causes are further broken into specific causes.
Fire Cause Specific
A further categorization of each General Fire Cause to indicate more specifically the agency or circumstance which started a fire or set the stage for its occurrence; source of a fire's ignition.
Fire Code
A code used within the interagency wildland fire community to track and compile cost information for emergency fire suppression expenditures for the incident.
Fire Department ID
The U.S. Fire Administration (USFA) has created a national database of Fire Departments. Most Fire Departments do not have an NWCG Unit ID and so it is the intent of the IRWIN team to create a new field that includes this data element to assist the National Association of State Foresters (NASF) with data collection.
Fire Discovery Date Time
The date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes.
Fire Mgmt Complexity
The highest management level utilized to manage a wildland fire event.
Fire Out Date Time
The date and time when a fire is declared out.
Fire Strategy Confine Percent
Indicates the percentage of the incident area where the fire suppression strategy of "Confine" is being implemented.
Fire Strategy Full Supp Percent
Indicates the percentage of the incident area where the fire suppression strategy of "Full Suppression" is being implemented.
Fire Strategy Monitor Percent
Indicates the percentage of the incident area where the fire suppression strategy of "Monitor" is being implemented.
Fire Strategy Point Zone Percent
Indicates the percentage of the incident area where the fire suppression strategy of "Point Zone Protection" is being implemented.
FS Job Code
A code use to indicate the Forest Service job accounting code for the incident. This is specific to the Forest Service. Usually displayed as 2 char prefix on FireCode.
FS Override Code
A code used to indicate the Forest Service override code for the incident. This is specific to the Forest Service. Usually displayed as a 4 char suffix on FireCode. For example, if the FS is assisting DOI, an override of 1502 will be used.
GACC
A code that identifies one of the wildland fire geographic area coordination center at the point of origin for the incident.A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination area.
ICS 209 Report Date Time
The date and time of the latest approved ICS-209 report.
ICS 209 Report For Time Period From
The date and time of the beginning of the time period for the current ICS-209 submission.
ICS 209 Report For Time Period To
The date and time of the end of the time period for the current ICS-209 submission.
ICS 209 Report Status
The version of the ICS-209 report (initial, update, or final). There should never be more than one initial report, but there can be numerous updates, and even multiple finals (as determined by business rules).
Incident Management Organization
The
Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Richmond National Battlefield Park to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson Level II classification system. Each polygon on the Richmond National Battlefield Park map was assigned to one of twenty-one map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained from Richmond National Battlefield Park in June 2004.
This is a copy of another layer - see original source: https://www.arcgis.com/home/item.html?id=e02b85c0ea784ce7bd8add7ae3d293d0OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send emailLayers
This is a vector tile service with labels for the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. Labels appear at scales greater than 1:5,000 and show the full Latin name or vegetation group name. At scales smaller than 1:5,000 the abbreviated vegetation class name is displayed. This service is mean to be used in conjunction with the vector tile services of the veg map polygons (either the solid symbology service or the hollow symbology service). The key to map class abbreviations can be found here. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8) The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).
Interagency Wildland Fire Perimeter History (IFPH)OverviewThis national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2023 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServer
This street centerline lines feature class represents current right of way in the City of Los Angeles. It shows the official street names and is related to the official street name data. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most current geographic information of the public right of way. The right of way information is available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works. Street Centerline layer was created in geographical information systems (GIS) software to display Dedicated street centerlines. The street centerline layer is a feature class in the LACityCenterlineData.gdb Geodatabase dataset. The layer consists of spatial data as a line feature class and attribute data for the features. City of LA District Offices use Street Centerline layer to determine dedication and street improvement requirements. Engineering street standards are followed to dedicate the street for development. The Bureau of Street Services tracks the location of existing streets, who need to maintain that road. Additional information was added to Street Centerline layer. Address range attributes were added make layer useful for geocoding. Section ID values from Bureau of Street Services were added to make layer useful for pavement management. Department of City Planning added street designation attributes taken from Community Plan maps. The street centerline relates to the Official Street Name table named EASIS, Engineering Automated Street Inventory System, which contains data describing the limits of the street segment. A street centerline segment should only be added to the Street Centerline layer if documentation exists, such as a Deed or a Plan approved by the City Council. Paper streets are street lines shown on a recorded plan but have not yet come into existence on the ground. These street centerline segments are in the Street Centerline layer because there is documentation such as a Deed or a Plan for the construction of that street. Previously, some street line features were added although documentation did not exist. Currently, a Deed, Tract, or a Plan must exist in order to add street line features. Many street line features were edited by viewing the Thomas Bros Map's Transportation layer, TRNL_037 coverage, back when the street centerline coverage was created. When TBM and BOE street centerline layers were compared visually, TBM's layer contained many valid streets that BOE layer did not contain. In addition to TBM streets, Planning Department requested adding street line segments they use for reference. Further, the street centerline layer features are split where the lines intersect. The intersection point is created and maintained in the Intersection layer. The intersection attributes are used in the Intersection search function on NavigateLA on BOE's web mapping application NavigateLA. The City of Los Angeles Municipal code states, all public right-of-ways (roads, alleys, etc) are streets, thus all of them have intersections. Note that there are named alleys in the BOE Street Centerline layer. Since the line features for named alleys are stored in the Street Centerline layer, there are no line features for named alleys in those areas that are geographically coincident in the Alley layer. For a named alley , the corresponding record contains the street designation field value of ST_DESIG = 20, and there is a name stored in the STNAME and STSFX fields.List of Fields:SHAPE: Feature geometry.OBJECTID: Internal feature number.STNAME_A: Street name Alias.ST_SUBTYPE: Street subtype.SV_STATUS: Status of street in service, whether the street is an accessible roadway. Values: • Y - Yes • N - NoTDIR: Street direction. Values: • S - South • N - North • E - East • W - WestADLF: From address range, left side.ZIP_R: Zip code right.ADRT: To address range, right side.INT_ID_TO: Street intersection identification number at the line segment's end node. The value relates to the intersection layer attribute table, to the CL_NODE_ID field. The values are assigned automatically and consecutively by the ArcGIS software first to the street centerline data layer and then the intersections data layer, during the creation of new intersection points. Each intersection identification number is a unique value.SECT_ID: Section ID used by the Bureau of Street Services. Values: • none - No Section ID value • private - Private street • closed - Street is closed from service • temp - Temporary • propose - Proposed construction of a street • walk - Street line is a walk or walkway • known as - • numeric value - A 7 digit numeric value for street resurfacing • outside - Street line segment is outside the City of Los Angeles boundary • pierce - Street segment type • alley - Named alleySTSFX_A: Street suffix Alias.SFXDIR: Street direction suffix Values: • N - North • E - East • W - West • S - SouthCRTN_DT: Creation date of the polygon feature.STNAME: Street name.ZIP_L: Zip code left.STSFX: Street suffix. Values: • BLVD - BoulevardADLT: To address range, left side.ID: Unique line segment identifierMAPSHEET: The alpha-numeric mapsheet number, which refers to a valid B-map or A-map number on the Cadastral tract index map. Values: • B, A, -5A - Any of these alpha-numeric combinations are used, whereas the underlined spaces are the numbers.STNUM: Street identification number. This field relates to the Official Street Name table named EASIS, to the corresponding STR_ID field.ASSETID: User-defined feature autonumber.TEMP: This attribute is no longer used. This attribute was used to enter 'R' for reference arc line segments that were added to the spatial data, in coverage format. Reference lines were temporary and not part of the final data layer. After editing the permanent line segments, the user would delete temporary lines given by this attribute.LST_MODF_DT: Last modification date of the polygon feature.REMARKS: This attribute is a combination of remarks about the street centerline. Values include a general remark, the Council File number, which refers the street status, or whether a private street is a private driveway. The Council File number can be researched on the City Clerk's website http://cityclerk.lacity.org/lacityclerkconnect/INT_ID_FROM: Street intersection identification number at the line segment's start node. The value relates to the intersection layer attribute table, to the CL_NODE_ID field. The values are assigned automatically and consecutively by the ArcGIS software first to the street centerline data layer and then the intersections data layer, during the creation of new intersection points. Each intersection identification number is a unique value.ADRF: From address range, right side.
The original source of this data set comes from an extract out of the California Ag Permits (CAP) system in September 2020. The CAP system is used to track and inventory pesticide use permits. The information contained in the CAP database was created/edited during the pesticide use permit application process. The CAP data extract was refined and the boundaries edited to better display in a cartographic setting. The ranch map is a complex and constantly changing data set that must be viewed as a work in progress. While every effort has been made to produce data as accurately as possible, there may be, for various reasons, some missing or inaccurate boundaries and labels. In many cases the data is only as accurate as the source information and maps provided by the permittees/applicants.Due to the nature of ranches in Monterey County, there are many ranches and/or permittees working the same location. As a result, there are often multiple features stacked upon each other.DATA FIELDS:Field Name = DescriptionPermNum = Permit Number: the permittee’s ID number.Permittee = Permittee: the permittee’s name.RanchName = Ranch Name: the ranch's name.SiteID = Site ID: the ranch's site ID number.RMGISAcres = Ranch Map GIS Acres: acreage of the ranch's polygon.RanchPoly = Ranch Polygons: distinguish if the ranch is a single or multiple polygons. - single polygon (ranch is a single polygon). - multiple polygons (ranch is split into multiple polygons).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2022 Wildfire Perimeters’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/b1f56031-c6a3-4e06-a382-badf15aa9f4e on 27 January 2022.
--- Dataset description provided by original source is as follows ---
The Wildland Fire Interagency Geospatial Services (WFIGS) Group provides authoritative geospatial data products under the interagency Wildland Fire Data Program. Hosted in the National Interagency Fire Center ArcGIS Online Organization (The NIFC Org), WFIGS provides both internal and public facing data, accessible in a variety of formats.
<table border='0' cellpadding='0' cellspacing='0' style='border-collapse:collapse; width:500pt;' width='449'><tbody><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Incident Name (Polygon)</td>
<td style='border-left:none; width:184pt;' width='245'>The Incident Name from the source polygon.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Feature Category</td>
<td style='border-left:none; width:184pt;' width='245'>Type of wildland fire perimeter set for the source polygon.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Map Method</td>
<td style='border-left:none; width:184pt;' width='245'>Controlled vocabulary to define how the source polygon was derived. Map Method may help define data quality.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>GIS Acres</td>
<td style='border-left:none; width:184pt;' width='245'>User-calculated acreage on the source polygon.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Polygon Create Date</td>
<td style='border-left:none; width:184pt;' width='245'>System field. Time stamp for the source polygon feature creation.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Polygon Modified Date</td>
<td style='border-left:none; width:184pt;' width='245'>System field. Time stamp for the most recent edit to the source polygon feature.<br />
</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Polygon Collection Date Time</td>
<td style='border-left:none; width:184pt;' width='245'>Date time for the source polygon feature collection.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Acres Auto Calculated</td>
<td style='border-left:none; width:184pt;' width='245'>Automated calculation of the source polygon acreage.</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>Polygon Source</td>
<td style='border-left:none; width:184pt;' width='245'>Data source of the perimeter geometry.<br />{Year} NIFS: Annual National Incident Feature Service<br />FFP: Final Fire Perimeter Service (Certified Perimeters)</td>
</tr><tr height='17' style='height:12.75pt;'>
<td height='17' style='height:12.75pt; width:153pt;' width='204'>ABCD Misc</td>
<td style='border-left:none; width:184pt;' width='245'>A FireCode
used by USDA FS to track and compile cost information for emergency
initial attack fire suppression expenditures. for A, B, C & D size
class fires on FS lands.
ADS Permission State
Indicates the permission hierarchy that is currently being applied when a system utilizes the UpdateIncident operation.
IRWIN Archived On
A
date set by IRWIN that indicates when an incident's data has met the
rules defined for the record to become part of the historical fire
records rather than an operational incident record. The value will be
set the current date/time if any of the following criteria are met:
1. ContainmentDataTime or ControlDateTime or FireOutDateTime or ModifiedOnDateTime > 12 months from the current DateTime
2. FinalFireReportDate is not null and ADSPermissionState is 'certified'.
Calculated Acres
A
measure of acres calculated (i.e., infrared) from a geospatial
perimeter of a fire. More specifically, the number of acres within the
current perimeter of a specific, individual incident, including unburned
and unburnable islands. The minimum size must be 0.1.
Containment Date Time
The date and time a wildfire was declared contained.
Control Date Time
The date and time a wildfire was declared under control.
Created By System
ArcGIS Server Username of system that created the IRWIN Incident record.
IRWIN Created On Date Time
Date/time that the IRWIN Incident record was
This is a vector tile service of the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. It is mean to be used in conjunction with the vector tile service that provides labels for each polygon. There is an additional vector tile service that provides solid colored polygons for the vegetation map if hollow outlines are not desired. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8). The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).
The Sonoma County fine scale vegetation and habitat map is an 83-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. This layer file is just to be used for symbology - no spatial data is included. For the spatial data, download the veg map layer package, file geodatabase, or shapefile. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tDClass definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8). The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels.The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary.The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).