50 datasets found
  1. a

    Service Locations

    • gisdata-apexnc.opendata.arcgis.com
    Updated Jan 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2025). Service Locations [Dataset]. https://gisdata-apexnc.opendata.arcgis.com/maps/apexnc::service-locations
    Explore at:
    Dataset updated
    Jan 5, 2025
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.The Service Locations feature class was created by Southern Geospatial Services (SGS) from a shapefile of customer service locations generated by dataVoice International (DV) as part of their agreement with the Town of Apex (TOA) regarding the development and implemention of an Outage Management System (OMS).Point features in this feature class represent service locations (consumers of TOA electric services) by uniquely identifying the features with the same unique identifier as generated for a given service location in the TOA Customer Information System (CIS). This is also the mechanism by which the features are tied to the OMS. Features are physically located in the GIS based on CIS address in comparison to address information found in Wake County GIS property data (parcel data). Features are tied to the GIS electric connectivity model by identifying the parent feature (Upline Element) as the transformer that feeds a given service location.SGS was provided a shapefile of 17992 features from DV. Error potentially exists in this DV generated data for the service location features in terms of their assigned physical location, phase, and parent element.Regarding the physical location of the features, SGS had no part in physically locating the 17992 features as provided by DV and cannot ascertain the accuracy of the locations of the features without undertaking an analysis designed to verify or correct for error if it exists. SGS constructed the feature class and loaded the shapefile objects into the feature class and thus the features exist in the DV derived location. SGS understands that DV situated the features based on the address as found in the CIS. No features were verified as to the accuracy of their physical location when the data were originally loaded. It is the assumption of SGS that the locations of the vast majority of the service location features as provided by DV are in fact correct.SGS understands that as a general rule that DV situated residential features (individually or grouped) in the center of a parcel. SGS understands that for areas where multiple features may exist in a given parcel (such as commercial properties and mobile home parks) that DV situated features as either grouped in the center of the parcel or situated over buildings, structures, or other features identifiable in air photos. It appears that some features are also grouped in roads or other non addressed locations, likely near areas where they should physically be located, but that these features were not located in a final manner and are either grouped or strung out in a row in the general area of where DV may have expected they should exist.Regarding the parent and phase of the features, the potential for error is due to the "first order approximation" protocol employed by DV for assigning the attributes. With the features located as detailed above, SGS understands that DV identified the transformer closest to the service location (straight line distance) as its parent. Phase was assigned to the service location feature based on the phase of the parent transformer. SGS expects that this protocol correctly assigned parent (and phase) to a significant portion of the features, however this protocol will also obviously incorretly assign parent in many instances.To accurately identify parent for all 17992 service locations would require a significant GIS and field based project. SGS is willing to undertake a project of this magnitude at the discretion of TOA. In the meantime, SGS is maintaining (editing and adding to) this feature class as part of the ongoing GIS maintenance agreement that is in place between TOA and SGS. In lieu of a project designed to quality assess and correct for the data provided by DV, SGS will verify the locations of the features at the request of TOA via comparison of the unique identifier for a service location to the CIS address and Wake County parcel data address as issues arise with the OMS if SGS is directed to focus on select areas for verification by TOA. Additionally, as SGS adds features to this feature class, if error related to the phase and parent of an adjacent feature is uncovered during a maintenance, it will be corrected for as part of that maintenance.With respect to the additon of features moving forward, TOA will provide SGS with an export of CIS records for each SGS maintenance, SGS will tie new accounts to a physical location based on address, SGS will create a feature for the CIS account record in this feature class at the center of a parcel for a residential address or at the center of a parcel or over the correct (or approximately correct) location as determined via air photos or via TOA plans for commercial or other relevant areas, SGS will identify the parent of the service location as the actual transformer that feeds the service location, and SGS will identify the phase of the service address as the phase of it's parent.Service locations with an ObjectID of 1 through 17992 were originally physically located and attributed by DV.Service locations with an ObjectID of 17993 or higher were originally physically located and attributed by SGS.DV originated data are provided the Creation User attribute of DV, however if SGS has edited or verified any aspect of the feature, this attribute will be changed to SGS and a comment related to the edits will be provided in the SGS Edits Comments data field. SGS originated features will be provided the Creation User attribute of SGS. Reference the SGS Edits Comments attribute field Metadata for further information.

  2. OpenStreetMap (Blueprint)

    • catalog.data.gov
    • gimi9.com
    • +16more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2024). OpenStreetMap (Blueprint) [Dataset]. https://catalog.data.gov/dataset/openstreetmap-blueprint-653c6
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  3. OpenStreetMap

    • esriindia.hub.arcgis.com
    • africageoportal.com
    • +41more
    Updated Nov 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri India SAAS App (2024). OpenStreetMap [Dataset]. https://esriindia.hub.arcgis.com/maps/671a954016794bef88b76ac215ec5fef
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri India SAAS App
    License

    Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
    License information was derived automatically

    Description

    This web map references the live tiled map service from the OpenStreetMap (OSM) project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: https://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in ESRI products under a Creative Commons Attribution-ShareAlike license. Tip: This service is one of the basemaps used in the ArcGIS.com map viewer. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10. Tip: Here are some well known locations as they appear in this web map, accessed by launching the web map with a URL that contains location parameters: Athens, Cairo, Jakarta, Moscow, Mumbai, Nairobi, Paris, Rio De Janeiro, Shanghai

  4. Geospatial data for the Vegetation Mapping Inventory Project of Fort Larned...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Fort Larned National Historic Site [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-fort-larned-national-histo
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Larned
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GIS Database 2002-2005: Project Size = 1,898 acres Fort Larned National Historic Site (including the Rut Site) = 705 acres 16 Map Classes 11 Vegetated 5 Non-vegetated Minimum Mapping Unit = ½ hectare is the program standard but this was modified at FOLS to ¼ acre. Total Size = 229 Polygons Average Polygon Size = 8.3 acres Overall Thematic Accuracy = 92% To produce the digital map, a combination of 1:8,500-scale (0.75 meter pixels) color infrared digital ortho-imagery acquired on October 26, 2005 by the Kansas Applied Remote Sensing Program and 1:12,000-scale true color ortho-rectified imagery acquired in 2005 by the U.S. Department of Agriculture - Farm Service Agency’s Aerial Photography Field Office, and all of the GPS referenced ground data were used to interpret the complex patterns of vegetation and land-use. In the end, 16 map units (11 vegetated and 5 land-use) were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed and revised. One hundred and six accuracy assessment (AA) data points were collected in 2006 by KNSHI and used to determine the map’s accuracy. After final revisions, the accuracy assessment revealed an overall thematic accuracy of 92%.

  5. a

    Flying Tap

    • hub.arcgis.com
    Updated Jan 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2025). Flying Tap [Dataset]. https://hub.arcgis.com/maps/apexnc::flying-tap
    Explore at:
    Dataset updated
    Jan 5, 2025
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.

  6. a

    Channels

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Puyallup (2025). Channels [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/puyallup::storm-water?layer=7
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    City of Puyallup
    Area covered
    Description

    This line feature class shows channels that are used to carry water directly to another area. This data is part of the GPS Drainage Project being conducted by Puyallup Public Works Dept, and the Pierce County GIS Dept. The project utilizes GPS technology to collect data of the City's drainage infrastructure. The drainage project collected drainage features in Puyallup that were either public, private and commercial. Some features could not be collected due to private gates and were not included.

  7. a

    Secondary Underground Line

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2025). Secondary Underground Line [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/apexnc::secondary-underground-line
    Explore at:
    Dataset updated
    Jan 5, 2025
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.

  8. D

    Geographic Information System GIS Tools Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System GIS Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Tools Market Outlook



    The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.



    One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.



    Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.



    The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.



    Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.



    Component Analysis



    The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.



    Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.



    The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr

  9. a

    FAITH &DAISY

    • africageoportal.com
    • hub.arcgis.com
    Updated Feb 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2023). FAITH &DAISY [Dataset]. https://www.africageoportal.com/maps/2c4fc5ce993a422daf64024d7c3dbc30
    Explore at:
    Dataset updated
    Feb 9, 2023
    Dataset authored and provided by
    Africa GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This map references the OpenStreetMap tile layer hosted by Esri. This tile layer presents a new vector basemap of OpenStreetMap (OSM) data created and hosted by Esri, now in beta release. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, that was rendered using OSM cartography. The vector tiles are updated every few weeks; refer to the OpenStreetMap tile layer for details on when it was last updated. When fully released, this vector basemap will be freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  10. a

    Control Structures

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Puyallup (2025). Control Structures [Dataset]. https://hub.arcgis.com/maps/puyallup::control-structures-1/about
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    City of Puyallup
    Area covered
    Description

    This point feature class shows control structures that are used to control the volume and/or velocity of the stromwater flow. This data is part of the GPS Drainage Project being conducted by Puyallup Public Works Dept. and the Pierce County GIS Dept. The project utilizes GPS technology to collect data of the City's drainage infrastructure. The drainage project collected drainage features in the City of Puyallup that were either public, private, or commercial. Some features could not be collected due to private gates and were not included.

  11. Data from: VCR LTER Global Positioning System Projects 1992 to 2004

    • search.dataone.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Carlson (2015). VCR LTER Global Positioning System Projects 1992 to 2004 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-vcr%2F156%2F16
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Charles Carlson
    Time period covered
    Feb 1, 1994 - Dec 31, 2004
    Area covered
    Variables measured
    LAT, LON, DATE, UTMX, UTMY, COMMENTS, ELEV_ELL, ELEV_MSL, FILENAME, LOCATION, and 1 more
    Description

    This dataset is a compendium of GPS Data collected by Randy Carlson and collaborators on the Virginia Coast Reserve (primarily), Plum Island and North Inlet. A master data table was extracted by Charles L. Carlson during 2013 that includes all the individual point locations recovered from individual surveys. In addition to the data table, the data is also shared as a .zip file containing a static web page with links to particular projects and the underlying data. To use the data, unzip it and use your web browser to open the index.html file. Web page contents include: American Oyster Catchers on the Virginia Coast Reserve - 2003 Lynette Winters - Salicornia - MSL elevation project Dynamic Evolution of Barrier Island Morphology and Ecology from 1996-2002 Documented Using High -Resolution GPS-GIS Topographic Mapping Surveys, Virginia Coast Reserve (for GSA, Denver, CO Oct 27-30, 2002 Broadwater Tower Overwash Fan Photos - Feburary 15, 2002 Hog Island Bay DGPS Drifter Study 2001 Ray Dueser/Nancy Moncrief Small Mammal GPS/GIS A Topographical History of North Myrtle Island, 1974 to 2001 Ray Dueser/Nancy Moncrief - Highest Elevations on VCR Barrier Islands Myrtle Island Planimetric area, Surface area & Volumetric Calculations 1996-2001 Myrtle, Ship Shoal GIS/GPS UTM Shape Files and Grids Myrtle, Ship Shoal, ESNWR, Shirley, Steelman's Landing Text Files Complete List of All Small Mammal Trap locations 1995 - 2001 Ship Shoal Island Small Mammal Traps 1997 - 2000 LTER Cross-Site GPS Surveys Hobcaw Barony / Baruch Institue SET/GPS Survey, South Carolina, December 2000 PIE/LTER - Plum Island Sound GPS Network, July 1998 Montandon Marsh at Bucknell University, Lewisburg, Pennsylvania 1997 Bathymetric Survey Procedures, Schematic Diagrams and Instructions The following instructions and procedures are used with reference to the Trimble 4000 SE Global Positioning System receiver, the Trimble NavBeacon XL, the Innerspace Digital Fathometer (Model 448) and the Innerspace DataLog with Guidance Software. GPS-referenced digital bathymetry Schematic Diagram of DGPS/Digital Fathometer connections for bathymetry Instructions for DataLog w/Guidance Software (Innerspace Digital Fathometer) Instructions for Trimble 4000 SE GPS Receiver and Trimble Navbeacon XL Innerspace Digital Fathometer - Model 448 - Field Protocol for Bathymetric Surveys Archived Bathymetric Projects Hog Island Bay DGPS Bathymetric Survey, 1999/2000 Phillip's Creek DGPS Bathymetric Survey 1999/2000 Oyster Harbor Bathymetric Survey (February 2000) Smith Point, Chesapeake Bay, Maryland DGPS Bathymetric Survey, Sept. 2001 Fishermans/Smith/Mockhorn Bay Bathymetric Survey 2000 to 2001 Post-processed Kinematic GPS data: Is It Precise? (1998) Small Mammal GPS/GIS Applications Hog Island Small Mammal Traps on T1, T2, T4, T5 Fowling Point 1996, 1997 Geomorphology Applications Parramore Island, Virginia Parramore Pimple Overwash Fans 1996 Parramore Pimple Overwash Fans 1997 Parramore Island Overwash Fans June 1998 Parramore Island Plugs - August 1998 Parramore Island Overwash Fan 1999 Hog Island, Virginia Broadwater Tower Overwash Fan June 1998 Photos of Broadwater Tower Overwash Fan - March 13, 1999 Broadwater Tower Overwash Fan 1999 Myrtle Island, Virginia A Topographical History of Myrtle Island, 1996 to 2001 Cobb and Fisherman's Islands, Virginia Cobb Island Overwash Fan July 1998 Fisherman's Island - ESNWR and ODU September /1998 Brownsville Farm GPS/GIS Project Long-Term Inundation Project, Christian/Thomas Brinson/Christian/Blum Project Eileen Appolone (ECU) Lisa Ricker's Static GPS Points in Northampton County Eileen Applone (East Carolina University) Static Survey d99124 Brownsville Farm GPS/GIS Project, Christian/Blum/Brinson VCR/LTER Tide Gauges and Water Level Recorders Red Bank Tide Gauge (part of Fowling Pt. survey) Hog Island WLR's 1996 (Brinson) Hog Island Tide Gauge 12/96 High tide surveys at PIE/LTER with Chuck Hopkinson Jim Morris, USC, at Debidue Island, South Carolina Benchmark BRNV in Brownsville, VCR/LTER Miscellaneous Static Sub-Networks Frank Day/Don Young - North Hog 2/99 (Excel File) or a TEXT file Frank Day 120 YR Old Dune Survey (Excel File) or a TEXT file Kindra Loomis GPS Kinematic/Topographic Survey 12/97 Clubhouse Creek at Parramore Island 1997 Phragmites on Southern Hog Island - (dataset only) (9/98) Oyster Harbor 1997 (Hayden & Porter) Southern Hog 1996 (Zieman) VCR/LTER Sediment Elevation Tables - Mockhorn/Wachapreague, August 2001 Aaron Mills Benchmarks - Research Field in Oyster, October 2001 Birds Nests on the Virginia Coast Reserve VCR Birds 1997 (Erwi... Visit https://dataone.org/datasets/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-vcr%2F156%2F16 for complete metadata about this dataset.

  12. OpenStreetMap 3D Trees (Thematic)

    • hub.arcgis.com
    • opendata.rcmrd.org
    • +1more
    Updated Jun 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Trees (Thematic) [Dataset]. https://hub.arcgis.com/maps/f75fef56b2d944fe92ef9f7737b4f953
    Explore at:
    Dataset updated
    Jun 11, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  13. Geospatial data for the Vegetation Mapping Inventory Project of Scotts Bluff...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Scotts Bluff National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-scotts-bluff-national-monu
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Scotts Bluff County
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. In order to avoid two repetitive ground field efforts, the sampling plan was devised from a combination of both vegetation maps. Using OR logic, overlays were created using both maps as input for each class, and random samples were developed for each class in excess of 30 polygons. Where there were less than 30 polygons sample sites were selected non-randomly from each polygon (i.e. a 100% sample). A total of 512 ground sampling sites were developed from a total of 21 vegetation and land cover classes which are represented on both vegetation maps. Using GIS tools, an ASCII file was generated with ground coordinates representing each of these sites. The 512 sets of coordinates were appropriately re-formatted and directly downloaded as waypoints in three North American Rockwell PLGR GPS receivers. During the week of August 4, 1997 three field crews of two persons each worked together at the monument in a coordinated effort to identify vegetation/cover types at each of the sites. The field crews had a paper map showing the location of the plots and the polygon boundaries (but not attributes) overlaid on topographic data. One team member operated the GPS receiver to navigate to the site, and the other identified the vegetation/cover type and provided a general physical description of the site environs. Sites were considered to be circular with a radius of 50 m. from the coordinate point. Where 2 or more vegetation/cover types occurred, or there was a mosaic of types, all were described within the 50 m. radius of the site coordinate.

  14. Imagery data for the Vegetation Mapping Inventory Project of Saint-Gaudens...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Imagery data for the Vegetation Mapping Inventory Project of Saint-Gaudens National Historic Site [Dataset]. https://catalog.data.gov/dataset/imagery-data-for-the-vegetation-mapping-inventory-project-of-saint-gaudens-national-histor
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    This reference contains the imagery data used in the completion of the baseline vegetation inventory project for the NPS park unit. Orthophotos, raw imagery, and scanned aerial photos are common files held here. The digital orthophoto mosaic was examined onscreen in ArcGIS 9.0 (ESRI 1999–2004). Once the natural community types were established, GPS points of the plots were overlaid on the 2004 CIR aerial photos using ArcView GIS software. These data layers were utilized to map the natural communities using on-screen digitizing techniques. The minimum mapping unit used was 0.5 ha.

  15. d

    Geospatial data for the Vegetation Mapping Inventory Project of Pipestone...

    • datasets.ai
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +2more
    57
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Geospatial data for the Vegetation Mapping Inventory Project of Pipestone National Monument [Dataset]. https://datasets.ai/datasets/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pipestone-national-monumen
    Explore at:
    57Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Pipestone
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.

    Random sample points were generated in ArcGIS. Points were buffered 40 meters from the park boundary and 80 meters from another point. The minimum mapping unit used in delineating vegetation polygons was 0.5 hectare. All random points were selected within the park boundary to avoid any private land issues. Randomly selected site locations were loaded onto a Garmin GPS unit for field navigation. All accuracy assessment field work was completed on June 26, 2012. Field staff was provided with a GPS unit, dichotomous key for mapping vegetation map classes and vegetation class definitions. Plot shape and size varied according to the extent of the vegetation class patch containing the sample point. Circular 0.25 hectare (28 m radius) plots were used for larger patches while circular 0.1 hectare (18 m radius) plots were used for small patches approaching the minimum mapping unit. A circular plot size of 0.5 hectare (40 m radius) was used to capture information for a single large homogenous patch. In all cases, plot size exceeded the minimum patch size for PIPE.

    Minimum Mapping Unit = 0.5 hectare Minimum Patch Size=.007 hectares Total Size = 55 Polygons Average Polygon Size = 5.39 acres (2.18 hectares) Overall Thematic Accuracy = 97.9% Project Completion Date: 12/2013

  16. d

    Geospatial data for the Vegetation Mapping Inventory Project of Hopewell...

    • datasets.ai
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +2more
    57
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). Geospatial data for the Vegetation Mapping Inventory Project of Hopewell Furnace National Historic Site [Dataset]. https://datasets.ai/datasets/geospatial-data-for-the-vegetation-mapping-inventory-project-of-hopewell-furnace-national-
    Explore at:
    57Available download formats
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    Department of the Interior
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.

    Identification and delineation of map polygons was fairly simple for most of the Hopewell Furnace NHS. One issue that arose was the relative inaccuracy of the available GIS park boundary files. Several boundary files available from the park or archived at North Carolina State University were in error by 10 to 25 m when overlaid on the digital ortho-photo mosaic. The boundary was later verified by Pennsylvania Science Office staff, who collected GPS coordinates for park boundary monuments. The resulting boundary (when GPS data was converted to a shapefile) was in close agreement with features observed in the photo mosaic (e.g. boundary roads, trails, hedgerows along property lines, etc.) and is considered the best representation of the park boundary for this mapping effort.

  17. Whitney Point Adelie Penguin Colonies, Vector GIS Layer

    • data.gov.au
    • cloud.csiss.gmu.edu
    • +5more
    cfm, htm, shp
    Updated Dec 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Antarctic Division (2015). Whitney Point Adelie Penguin Colonies, Vector GIS Layer [Dataset]. https://data.gov.au/data/dataset/aad-asac-1219-aat-wp-adpe-colonies
    Explore at:
    cfm, htm, shpAvailable download formats
    Dataset updated
    Dec 12, 2015
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    An ArcGIS shapefile layer showing the extent of all extant and relic Adelie penguin (Pygoscelis adeliae) colonies at Whitney Point, Windmill Islands, February 2006. The field 'Status' describes each polygon as extant, relic or maximum. Extant refers to the area used by breeding birds in the summer 2005/06. Maximum refers to the historic maximal extent of the colony. Relic refers to any colony which was not occupied by any breeding pairs during 2005/06.

    Positional accuracy is approx. 1-2 m, after accounting for dGPS errors and errors in identification of the boundaries of colonies. Mapping was conducted after the end of the breeding season, so boundaries were identified as the extent of nest pebbles/fresh faeces, and it was considered that they could be reliably identified to within 0.5m.

    Data were acquired using a Trimble Pro XH differential GPS. This work was completed as part of ASAC project 1219 (ASAC_1219).

    Also for this project, three aerial photographs of Whitney point showing the adelie penguin colonies and taken on 17 December 1990 were georeferenced.

    These aerial photographs are film ANTC1219 run 54 frames 21 to 23.

    Work on this project also utilised a Digital Elevation Model (DEM) created for Shirley Island. See the metadata record, 'A digital elevation model (DEM) and orthophoto of the Whitney Point area of the Windmill Islands, Antarctica' for more information (linked below).

    Since the 2005/06 summer was a low-ice year the opportunity was also taken to survey with differential GPS a section of coastline about 230 metres long east of Whitney Point on Clark Peninsula. This section of coastline was ice free and accessible. The data was collected with differential GPS on 10 February 2006.

  18. n

    Surveys on Macquarie Island for the Australian Antarctic Division, September...

    • cmr.earthdata.nasa.gov
    • cloud.csiss.gmu.edu
    • +4more
    cfm
    Updated Apr 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Surveys on Macquarie Island for the Australian Antarctic Division, September to November 1997 [Dataset]. http://doi.org/10.4225/15/54B33FAB8F15C
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Apr 26, 2017
    Time period covered
    Sep 1, 1997 - Nov 30, 1997
    Area covered
    Description

    Natasha Adams, surveyor, carried out surveys on Macquarie Island for the Australian Antarctic Division between September and November 1997.

    A number of science programs required survey assistance on Macquarie Island.
    Four major tasks were to be performed during the period of 13 September to 24 November 1997. These, in order of priority were 1 ASAC Project 2277: Track monitoring and assessment - location of tracks and monitoring of vegetation type and degradation in conjunction with Judith Urquhart 2 ASAC Project 1015: Location of botanical transects on four mountains for Craig Tweedie 3 Location of points of interest for Clive Crossley 4 Second order levelling between the Garden Cove Tide Gauges and the AFN site AUS211

    Three other tasks were also undertaken in spare time whilst on the island 1 Location of Geological sites for Garry Davidson 2 Location of Royal Penguin Rookery boundaries at Sandy Bay and Bauer Bay for Mark Hindell 3 Location and heights of the named mountain tops on the island for AUSLIG

    Information about the survey and data are provided in two reports: N. Adams, 'Survey Report for Macquarie Island, September to November 1997' and M. King, R. Coleman and P. Standen, 'GPS data processing, Macquarie Island, September to November 1997'.

    Available for download from the URLs below are: (i) The differentially corrected point data from the walking track survey, as a spreadsheet. Attributes include surface, disturbance indicators, drainage and gradient. (ii) Vegetation along the walking tracks (points) extracted from the differentially corrected point data, as a shapefile. (ii) Walking tracks (lines) generated from the differentially corrected point data, as a shapefile. (iii) Natasha's survey report as a pdf.

    The walking tracks are displayed in a pair of A3 1:50000 maps produced by the Australian Antarctic Data Centre. A map list in the URLs below allows access to the Map Catalogue entries for these maps from which the maps can be viewed or downloaded as pdfs.

  19. a

    Manholes

    • hub.arcgis.com
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Puyallup (2025). Manholes [Dataset]. https://hub.arcgis.com/datasets/puyallup::storm-water?layer=2
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    City of Puyallup
    Area covered
    Description

    This point feature class shows manholes that are used to access and clean out pipes. This data is part of the GPS Drainage Project being conducted by Puyallup Public Works Dept. and the Pierce County GIS Dept. The project utilizes GPS technology to collect data of the City's drainage infrastructure. The drainage project collected drainage features in the City of Puyallup that were either public, private, or commercial. Some features could not be collected due to private gates and were not included.

  20. a

    Climate resilient capital projects with GPS

    • data-fredericton.opendata.arcgis.com
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Fredericton - Ville de Fredericton (2022). Climate resilient capital projects with GPS [Dataset]. https://data-fredericton.opendata.arcgis.com/maps/Fredericton::climate-resilient-capital-projects-with-gps
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    City of Fredericton - Ville de Fredericton
    Area covered
    Description

    Location and type of resilient infrastructure projects completed by the City of Fredericton between 2015 and 2024

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Town of Apex, North Carolina (2025). Service Locations [Dataset]. https://gisdata-apexnc.opendata.arcgis.com/maps/apexnc::service-locations

Service Locations

Explore at:
Dataset updated
Jan 5, 2025
Dataset authored and provided by
Town of Apex, North Carolina
Area covered
Description

The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.The Service Locations feature class was created by Southern Geospatial Services (SGS) from a shapefile of customer service locations generated by dataVoice International (DV) as part of their agreement with the Town of Apex (TOA) regarding the development and implemention of an Outage Management System (OMS).Point features in this feature class represent service locations (consumers of TOA electric services) by uniquely identifying the features with the same unique identifier as generated for a given service location in the TOA Customer Information System (CIS). This is also the mechanism by which the features are tied to the OMS. Features are physically located in the GIS based on CIS address in comparison to address information found in Wake County GIS property data (parcel data). Features are tied to the GIS electric connectivity model by identifying the parent feature (Upline Element) as the transformer that feeds a given service location.SGS was provided a shapefile of 17992 features from DV. Error potentially exists in this DV generated data for the service location features in terms of their assigned physical location, phase, and parent element.Regarding the physical location of the features, SGS had no part in physically locating the 17992 features as provided by DV and cannot ascertain the accuracy of the locations of the features without undertaking an analysis designed to verify or correct for error if it exists. SGS constructed the feature class and loaded the shapefile objects into the feature class and thus the features exist in the DV derived location. SGS understands that DV situated the features based on the address as found in the CIS. No features were verified as to the accuracy of their physical location when the data were originally loaded. It is the assumption of SGS that the locations of the vast majority of the service location features as provided by DV are in fact correct.SGS understands that as a general rule that DV situated residential features (individually or grouped) in the center of a parcel. SGS understands that for areas where multiple features may exist in a given parcel (such as commercial properties and mobile home parks) that DV situated features as either grouped in the center of the parcel or situated over buildings, structures, or other features identifiable in air photos. It appears that some features are also grouped in roads or other non addressed locations, likely near areas where they should physically be located, but that these features were not located in a final manner and are either grouped or strung out in a row in the general area of where DV may have expected they should exist.Regarding the parent and phase of the features, the potential for error is due to the "first order approximation" protocol employed by DV for assigning the attributes. With the features located as detailed above, SGS understands that DV identified the transformer closest to the service location (straight line distance) as its parent. Phase was assigned to the service location feature based on the phase of the parent transformer. SGS expects that this protocol correctly assigned parent (and phase) to a significant portion of the features, however this protocol will also obviously incorretly assign parent in many instances.To accurately identify parent for all 17992 service locations would require a significant GIS and field based project. SGS is willing to undertake a project of this magnitude at the discretion of TOA. In the meantime, SGS is maintaining (editing and adding to) this feature class as part of the ongoing GIS maintenance agreement that is in place between TOA and SGS. In lieu of a project designed to quality assess and correct for the data provided by DV, SGS will verify the locations of the features at the request of TOA via comparison of the unique identifier for a service location to the CIS address and Wake County parcel data address as issues arise with the OMS if SGS is directed to focus on select areas for verification by TOA. Additionally, as SGS adds features to this feature class, if error related to the phase and parent of an adjacent feature is uncovered during a maintenance, it will be corrected for as part of that maintenance.With respect to the additon of features moving forward, TOA will provide SGS with an export of CIS records for each SGS maintenance, SGS will tie new accounts to a physical location based on address, SGS will create a feature for the CIS account record in this feature class at the center of a parcel for a residential address or at the center of a parcel or over the correct (or approximately correct) location as determined via air photos or via TOA plans for commercial or other relevant areas, SGS will identify the parent of the service location as the actual transformer that feeds the service location, and SGS will identify the phase of the service address as the phase of it's parent.Service locations with an ObjectID of 1 through 17992 were originally physically located and attributed by DV.Service locations with an ObjectID of 17993 or higher were originally physically located and attributed by SGS.DV originated data are provided the Creation User attribute of DV, however if SGS has edited or verified any aspect of the feature, this attribute will be changed to SGS and a comment related to the edits will be provided in the SGS Edits Comments data field. SGS originated features will be provided the Creation User attribute of SGS. Reference the SGS Edits Comments attribute field Metadata for further information.

Search
Clear search
Close search
Google apps
Main menu