Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
The Charted Territory Map (World Edition) web map provides a customized world basemap uniquely symbolized. It takes its inspiration from a printed atlas plate and pull-down scholastic classroom maps. The map emphasizes the geographic and political features in the design. The use of country level polygons are preassigned with eight different colors. It also includes the global graticule features as well as landform labels of physical features and hillshade. This basemap, included in the ArcGIS Living Atlas of the World, uses the Charted Territory vector tile layer and World Hillshade. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.
TRIMARC (Traffic Response and Incident Management Assisting the River City) camera locations in Louisville Metro Kentucky. This feature layer was created from a TRIMARC JSON files of camera locations. This item includes description, direction, and videos links and is used in the Louisville Metro Snow Map. The cameras are used to monitor the roadways and verify incidents to assist in freeway and incident management This feature is a static extract and will be reviewed before each snow season for updates. For more information on this feature layer and it's use please contact Louisville Metro GIS or LOJIC. To learn more about TRIMARC please visit the following website http://www.trimarc.org.
The Mid-Century Map (World Edition) web map provides a customized world basemap symbolized with a unique "Mid-Century" style. It takes its inspiration from the art and advertising of the 1950's with unique fonts. The symbols for cities and capitals have an atomic slant to them. The map data includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries.This basemap, included in the ArcGIS Living Atlas of the World, uses the Mid-Century vector tile layer.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer referenced in this map.
This dataset contains the recreation opportunity information that the Forest Service collects through the Recreation Portal and shares with the public on https://www.recreation.gov, the Forest Service World Wide Web pages (https://www.fs.usda.gov/) and the Interactive Visitor Map. This recreation data contains detailed descriptions of recreational sites, areas, activities & facilities. This published dataset consists of one point feature class for recreational areas, one spatial view and three related tables such as activities, facilities & rec area advisories. The purpose of each related table is described below RECAREAACTIVITIES: This related table contains information about the activities that are associated with the rec area.RECAREAFACILITIES: This related table contains information about the amenities that are associated with the rec area. RECAREAADVISORIES: This table contains events, news, alerts and warnings that are associated with the rec area.RECAREAACTIVITIES_V: This spatial view/feature class is generated by joining the RECAREAACTIVITIES table to the RECREATION OPPORTUNITIES Feature Class. Please note that the RECAREAID is the unique identifier present in point feature class and in the related tables as well. The RECAREAID is used as foreign key to access relate records.This published data is updated nightly from an XML feed maintained by the CIO Rec Portal team. This data is intended for public use and distribution. Metadata
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Shared Use Paths are also known as 'Separated Bike Facilities'. These are accessible to pedestrians and bicyclists. Includes Completed (by Dunwoody), Planned (identified on a local plan), Potential Future, and Programmed (resources allocated for completion) Paths within Dunwoody and vicinity. Dunwoody intends to connect to PATH400 in the future. Locations of Paths are approximate.
This 3D basemap presents OpenStreetMap (OSM) data and other data sources and is hosted by Esri using the OpenStreetMap style.Esri created the Places and Labels, Trees, and OpenStreetMap layers from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.The Buildings layer (beta) presents open buildings data that has been processed and hosted by Esri. Esri created this buildings scene layer using data from the Overture Maps Foundation (OMF) which is supported by Meta, Microsoft, Amazon, TomTom, Esri and other members. Overture includes data from many sources, including OpenStreetMap (OSM). The 3D buildings layer will be updated each month with the latest version of Overture data, which includes the latest updates from OSM, Esri Community Maps, and other sources.Overture Maps is a collaborative project to create reliable, easy-to-use, and interoperable open map data. Member companies work to bring together the best available open datasets, and the resulting data can be downloaded from Microsoft Azure or Amazon S3. Esri is a member of the OMF project and is excited to make this 3D web scene available to the ArcGIS user community.
The Colored Pencil Map (World Edition) web map provides a detailed vector basemap for the world symbolized with the appearance of being hand-drawn by colored pencils. The map includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, trees, and administrative boundaries. This basemap, included in the ArcGIS Living Atlas of the World, uses the Colored Pencil vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This ArcGIS Online hosted feature service displays perimeters from the National Incident Feature Service (NIFS) that meet ALL of the following criteria:
Sixty-seven maps from Indian Land Cessions in the United States, compiled by Charles C. Royce and published as the second part of the two-part Eighteenth Annual Report of the Bureau of American Ethnology to the Secretary of the Smithsonian Institution, 1896-1897 have been scanned, georeferenced in JPEG2000 format, and digitized to create this feature class of cession maps. The mapped cessions and reservations included in the 67 maps correspond to entries in the Schedule of Indian Land Cessions, indicating the number and location of each cession by or reservation for the Indian tribes from the organization of the Federal Government to and including 1894, together with descriptions of the tracts so ceded or reserved, the date of the treaty, law or executive order governing the same, the name of the tribe or tribes affected thereby, and historical data and references bearing thereon, as set forth in the subtitle of the Schedule. Go to this URL for full metadata: https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.TRIBALCEDEDLANDS.xml Each Royce map was georeferenced against one or more of the following USGS 1:2,000,000 National Atlas Feature Classes contained in \NatlAtlas_USGS.gdb: cities_2mm, hydro_ln_2mm, hydro_pl_2mm, plss_2mm, states_2mm. Cessions were digitized as a file geodatabase (GDB) polygon feature class, projected as NAD83 USA_Contiguous_Lambert_Conformal_Conic, which is the same projection used to georeference the maps. The feature class was later reprojected to WGS 1984 Web Mercator (auxiliary sphere) to optimize it for the Tribal Connections Map Viewer. Polygon boundaries were digitized as to not deviate from the drawn polygon edge to the extent that space could be seen between the digitized polygon and the mapped polygon at a viewable scale. Topology was maintained between coincident edges of adjacent polygons. The cession map number assigned by Royce was entered into the feature class as a field attribute. The Map Cession ID serves as the link referencing relationship classes and joining additional attribute information to 752 polygon features, to include the following: 1. Data transcribed from Royce's Schedule of Indian Land Cessions: a. Date(s), in the case of treaties, the date the treaty was signed, not the date of the proclamation; b. Tribe(s), the tribal name(s) used in the treaty and/or the Schedule; and c. Map Name(s), the name of the map(s) on which a cession number appears; 2. URLs for the corresponding entry in the Schedule of Indian Land Cessions (Internet Archive) for each unique combination of a Date and reference to a Map Cession ID (historical references in the Schedule are included); 3. URLs for the corresponding treaty text, including the treaties catalogued by Charles J. Kappler in Indian Affairs: Laws and Treaties (HathiTrust Digital Library), executive order or other federal statute (Library of Congress and University of Georgia) identified in each entry with a reference to a Map Cession ID or IDs; 4. URLs for the image of the Royce map(s) (Library of Congress) on which a given cession number appears; 5. The name(s) of the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text, as well as the name of the present-day Indian tribe or tribes; and 6. The present-day states and counties included wholly or partially within a Map Cession boundary. During the 2017-2018 revision of the attribute data, it was noted that 7 of the Cession Map IDs are missing spatial representation in the Feature Class. The missing data is associated with the following Cession Map IDs: 47 (Illinois 1), 65 (Tennessee and Bordering States), 128 (Georgia), 129 (Georgia), 130 (Georgia), 543 (Indian Territory 3), and 690 (Iowa 2), which will be updated in the future. This dataset revises and expands the dataset published in 2015 by the U.S. Forest Service and made available through the Tribal Connections viewer, the Forest Service Geodata Clearinghouse, and Data.gov. The 2018 dataset is a result of collaboration between the Department of Agriculture, U.S. Forest Service, Office of Tribal Relations (OTR); the Department of the Interior, National Park Service, National NAGPRA Program; the U.S. Environmental Protection Agency, Office of International and Tribal Affairs, American Indian Environmental Office; and Dr. Claudio Saunt of the University of Georgia. The Forest Service and Dr. Saunt independently digitized and georeferenced the Royce cession maps and developed online map viewers to display Native American land cessions and reservations. Dr. Saunt subsequently undertook additional research to link Schedule entries, treaty texts, federal statutes and executive orders to cession and reservation polygons, which he agreed to share with the U.S. Forest Service. OTR revised the data, linking the Schedule entries, treaty texts, federal statues and executive orders to all 1,172 entries in the attribute table. The 2018 dataset has incorporated data made available by the National NAGPRA Program, specifically the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text and the name of the present-day Indian tribe or tribes, as well as the present-day states and counties included wholly or partially within a Map Cession boundary. This data replaces in its entirety the National NAGPRA data included in the dataset published in 2015. The 2015 dataset incorporated data presented in state tables compiled from the Schedule of Indian Land Cessions by the National NAGPRA Program. In recent years the National NAGPRA Program has been working to ensure the accuracy of this data, including the reevaluation of the present-day Indian tribes and the provision of references for their determinations. Changes made by the OTR have not been reviewed or approved by the National NAGPRA Program. The Forest Service will continue to collaborate with other federal agencies and work to improve the accuracy of the data included in this dataset. Errors identified since the dataset was published in 2015 have been corrected, and we request that you notify us of any additional errors we may have missed or that have been introduced. Please contact Rebecca Hill, Policy Analyst, U.S. Forest Service, Office of Tribal Relations, at rebeccahill@fs.usda.gov with any questions or concerns with regard to the data included in this dataset.
This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons. The map layer was developed as part of the effort to produce the maps published at 1:2,500,000 in the printed series "Ground Water Atlas of the United States". The published maps contain base and cultural features not included in these data. This is a replacement for the July 1998 map layer called Principal Aquifers of the 48 Conterminous United States.
This online map displays facility sites in group or by facility types in separate layers: 1. All facility types in separate layers including tank, tank setting, pit, and pipeline layers. 2. Facility Group sites, each group has associated facilities that belong to the same operator. One group site may represent multiple facilities. 3. Facility Boundary layer digitized by CalGEM to show the areas that delineate approximately any equipment ancillary for oil and gas production or injection operations that are under the jurisdiction of CalGEM (CCR 1760).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).WellSTAR homepageUpdate Frequency: As Needed
https://www.broward.org/Terms/Pages/Default.aspxhttps://www.broward.org/Terms/Pages/Default.aspx
State_Centroids
County_Centroids
This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary
The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are designed to provide the user with the ability to determine the flood zone, base flood elevation, and floodway status for a particular location. It also has information about the NFIP communities, map panels, cross sections, hydraulic structures, Coastal Barrier Resource System, and base maps such as road, stream, and public land survey data. Through flood studies, FEMA produces Flood Insurance Study Reports, FIRM Panels, and FIRM Databases. FIRM Databases that become effective are incorporated into the NFHL. Updates to the NFHL are issued through Letters of Map Revision (LOMRs) and Letters of Map Amendment (LOMAs). Continuously updated, the NFHL serves as a Digital Flood Insurance Rate Map representing the current effective flood data for those communities where maps have been digitized. NFHL data can be viewed with widely available GIS software, including freely available programs that work with GIS shapefiles. For more information on the NFHL, see the online resources referenced herein. Using base maps: The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. Letter of Map Amendment (LOMA) point locations are approximate. The location of the LOMA is referenced in the legal description of the letter itself. LOMA points can be viewed in the NFHL Interactive Map on the FEMA GeoPlatform.
Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm