Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a file geodatabase download of SFWMD Arc Hydro Enhanced Database (AHED). This database includes hydrography feature classes such as canals, structures, and drainage areas.The Arc Hydro Enhanced Database (AHED) provides a geographically comprehensive database of hydrographic data features for the South Florida Water Management District (SFWMD).This file geodatabase includes relationship classes and domains. It contains the following feature classes:BasinSubbasinWatershedSubwatershedHydroedge (Canals)HydrojunctionStructureRainmeshRainAreaWaterbodyThese feature classes are also provided on this site as individual downloads. The AHED data is updated quarterly.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe USGS National Hydrography Dataset (NHD) service from The National Map is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000 (or larger) scale and referred to as high resolution NHD, and the other based on 1:100,000 scale and referred to as medium resolution NHD. The NHD from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. The NHD is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map download client allows free downloads of public domain NHD data in either Esri File Geodatabase or Shapefile formats. For additional information on the NHD, go to https://nhd.usgs.gov/index.html.
Facebook
TwitterHYD_FLOWLINE_ARC: This dataset contains flowline features from the US Geologic Survey (USGS) High Resolution National Hydrography Dataset (NHD). NHD Flowline features are linear depictions of streams and centerlines of rivers. Additional attributes have been added from the Bureau of Land Management (BLM) hydrography event data. This dataset will be refreshed as-needed to reflect updates to the NHD and hydrography events.
Facebook
TwitterUSGS NHD National Hydrography Dataset 24 min data for Pickaway County. Contains the basic stream and water body network for the Pickaway County region. For reference only; may not align with current aerials because of stream and river meanders over time.Source is the USGS For further information contact
Pickaway County GIS Dept
124 W Franklin St.
Circleville, Ohio 43113
Phone: 740-474-5823
Fax: 740-477-8265
Email: jgillow@pickaway.org
Facebook
TwitterArc Hydro (AH) is a geospatial and temporal data model for water resources, which operates within ArcGIS and was developed by the GIS in Water Resources (GISWR) Consortium in the United States. The Consortium is comprised of several members including:
AH consists of a set of tools used to create and support a comprehensive water resources framework for hydrologic and related geospatial data analysis. The original focus of Arc Hydro was to support surface water modeling, but work has progressed into the groundwater realm. ESRI plans to link the two systems into one complete data modeling framework in the near future.
The Ministry of Natural Resources - Water Resources Information Program (WRIP) was involved in a multi-year project to develop standardized Arc Hydro surface water data sessions based on the Quaternary Watershed fabric for the Province of Ontario. Each session contains foundation layers required for fundamental hydrologic watershed analysis.
To meet the requirements of Arc Hydro, the project team followed rigorous quality checking and assurance procedures which resulted in extensive and significant base data improvements across the Province. These enhancements are regarded collectively as a 'snapshot' version of our hydrology base and derivative products. Base data updates are happening on a continual basis, which will have implications on any derivative or related product that has been produced to date by the Province. Any further work in Arc Hydro will depend on available resources and support from the various business areas interested in utilizing these data and tools.
Some key elements of the project include:
Facebook
TwitterRetirement Notice: This item is in mature support as of June 2025 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This tile layer is designed to provide a a hydrologically oriented set of features to use with the World Terrain Base Layer or other simple base maps. The map features a hydro-centric design based on the amount of water flowing within the drainage network such that symbols of the same size and color represent roughly the same amount of water. This map shows surface water flow as a linear phenomenon even over and through bodies of water. Using the best available data we show relative flow accurately, so that if one river carries more water downstream than another river, the result will be that the river will have a thicker symbol on the map. This map is used as an overlay for content such as elevation from the World Terrain Base service or thematic services such as soil units, vegetation, or ecoregions. Combined with a basemap and your map services, this map provides a frame of reference for showing regional, national, and continental hydrologic phenomena such as drought, runoff, river level monitoring and flood forecasting. River names are collected in the UTF8 character set so river names are collected in their original language but are written in the Roman alphabet. Sources for all river names are from the open source geonames.org project so they are international by nature. The map is compiled from several sources. The global scales (very small scales through 1:2,300,000) include content from: HydroSHEDS, GTOPO30 Global Topographic Data, SRTM, GLWD, WorldClim, GRDC, and WWF Global 200 Terrestrial Eco Regions, with the latter three providing the inputs and basis for calculating flow. At medium scales (1:36,000 to 1:2,000,000) this service currently contains only U.S. data from the NHDPlusV2 that was jointly produced by the USGS and EPA.
Facebook
TwitterThe New Hampshire Hydrography Dataset (NHHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the state's surface water drainage system. The NHHD, developed at 1:24,000 scale, is an extract from the high-resolution National Hydrography Dataset (NHD) housed at the US Geological Survey.The NHHD Shapefile Extract contains the NHDFlowline, NHDWaterbody and NHDArea feature classes from the original NHHD geodatabase. These shapefiles cover the extent of the sixteen cataloging units that intersect the State of NH, and contain reach codes for networked features, stream order, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the the Atlantic Ocean. However, because this data is no longer contained in the original geodatabase, the networking capabilities of the NHDFlowline has been lost. This dataset contains data published by USGS in April 2019.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
National Hydrography Dataset
Facebook
TwitterThis tile layer is designed to provide a a hydrologically oriented set of features to use with the World Terrain Base Layer or other simple base maps. The map features a hydro-centric design based on the amount of water flowing within the drainage network such that symbols of the same size and color represent roughly the same amount of water. This map shows surface water flow as a linear phenomenon even over and through bodies of water. Using the best available data we show relative flow accurately, so that if one river carries more water downstream than another river, the result will be that the river will have a thicker symbol on the map.This map is used as an overlay for content such as elevation from the World Terrain Base service or thematic services such as soil units, vegetation, or ecoregions. Combined with a basemap and your map services, this map provides a frame of reference for showing regional, national, and continental hydrologic phenomena such as drought, runoff, river level monitoring and flood forecasting.River names are collected in the UTF8 character set so river names are collected in their original language but are written in the Roman alphabet. Sources for all river names are from the open source geonames.org project so they are international by nature.The map is compiled from several sources. The global scales (very small scales through 1:2,300,000) include content from: HydroSHEDS, GTOPO30 Global Topographic Data, SRTM, GLWD, WorldClim, GRDC, and WWF Global 200 Terrestrial Eco Regions, with the latter three providing the inputs and basis for calculating flow. At medium scales (1:36,000 to 1:2,000,000) this service currently contains only U.S. data from the NHDPlusV2 that was jointly produced by the USGS and EPA.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
To provide an alternative to the native NHD measuring system of percentage of distance along reach length with one that enhances the ability to examine distance relationships along entire stream courses.
Facebook
Twitter24K Hydro File Geodatabase, including bank lines, flow lines, junction points, hydro lines, water bodies, hydro points, and a network. Access the user guide, data dictionaries, and metadata below.The DNR Hydrography database was developed statewide using several 1:24,000-scale sources. This data layer includes information about surface water features represented on the USGS 1:24,000-scale topographic map series such as perennial and intermittent streams, lakes, etc. Because the sources of the Hydrography data span many years and originate from several sources, the data may reflect areas of transition from one source to another. As a result, the water features as represented in the Hydrography data may not always match what you see on a particular USGS quad or Digital Raster Graphic (DRG). General source information is presented on this map: Wisconsin Hydrography Source Information. Note: Wetlands delineations are not included in the DNR Hydrography data layer. For information about DNR Wetlands data, see the Wisconsin Wetland Inventory web page.Report errors in this data to Dennis Wiese (dennis.wiese@wisconsin.gov) with the following information:HYDROID of the feature in question; OR if the feature is missing, a location coordinate or description (e.g. latitude/longitude, Public Land Survey System Township, Range, and Section identifier) that identifies the area in question.Optional but very helpful: a screen capture of the area in question, or the Water Body Identification Code (WBIC) of the feature in question.DNR staff can access the hydrography database in the agency's central GIS data repository. The hydrography feature classes are stored in the feature dataset "W23324.WD_HYDRO_DATA_24K".USER GUIDES AND DOCUMENTATION: WDNR_HYDRO_24k_GETTING STARTED WDNR HYDRO 24K UPDATES DOCUMENT 24K HYDRO DECISION RULESData Dictionaries and Metadata WDNR_HYDRO_24k_waterbody_data_dict WDNR_HYDRO_24k_waterbody_metadata WDNR_HYDRO_24k_flowline_data_dict WDNR_HYDRO_24k_flowline_metadata WDNR_HYDRO_24k_bank_data_dict WDNR_HYDRO_24k_bank_metadata WDNR_HYDRO_24k_junction_data_dict WDNR_HYDRO_24k_junction_metadata WDNR_HYDRO_24k_line_data_dict WDNR_HYDRO_24k_line_metadata WDNR_HYDRO_24k_flowline_wbic_data_dict WDNR_HYDRO_24k_flowline_wbic_metadata WDNR_HYDRO_24k_waterbody_wbic_data_dict WDNR_HYDRO_24k_waterbody_wbic_metadataArcMap Layer (.lyr) Files 24k Hydro Flowline Duration 24k Hydro Bank Lines 24k Hydro Flowline Streams 24k Hydro Waterbody Open Water
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Canals and streams (AHED HydroEdges) are the network of lines describing the map hydrography. The HydroEdge feature class was populated using the 1:24000 National Hydrography Dataset (NHD). There are two subtypes of HydroEdges: Flowline, which traces water movement, and Shoreline, which forms the interface between land and water where it is not defined by a waterbody polygon. HydroEdge geometry for primary and secondary and some local features has been edited for correctness using the District's aerial imagery. According to the Arc Hydro Model, the end points of HydroEdges are always covered by point features called HydroJunctions.
Facebook
TwitterWaterways in Chicago, including Lake Michigan, rivers, and lakes. The data can be viewed on the Chicago Data Portal with a web browser. To view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.
Facebook
TwitterThe last update to this data was completed on 6/22/2020, this update focused on reviewing existing waterbodies and folding in missing waterbodies for the Chemung HUC (02050105) and the Tioga HUC (02050104). A History of edits is listed below. The full statewide dataset can be downloaded from: https://www.usgs.gov/national-hydrography/access-national-hydrography-productsWeb Service url - https://gisservices.its.ny.gov/arcgis/rest/services/NYS_Hydrography_HollowFill/MapServerThis web service is a subset for New York State of the National Hydrography Dataset (NHD), there is more information about each layer in the description of the groups and specific layers. The NHD is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes and the Atlantic Ocean. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. -- History of edits 02/18/2020 -- Waterbody Updates to Southern Long Island HUC (02030202) & Owego-Wappasening HUC (02050103) 10/04/2019 – Waterbody Updates to Upper Susquehanna HUC (02050101) 08/19/2019 – Waterbody Updates to Chenango HUC (02050102) & Northern Long Island HUC (02030201)Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions.
Facebook
TwitterThe National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
Facebook
TwitterThis layer contains hydrography such as streams, rivers, and other linear hydrography features. Hidden hydrography, inferred drainage connectors, or culverts connect visible hydrography to form a continuous network. These connectors or hidden features maintain a predictable direction connecting the 2 points that conceal or infer the feature. Streams: Captured as single line if less than two meters wide. Both water edges plotted if wider than two meters. Docks and Piers: Visible outline delineated. Jetty: Visible outline delineated. Seawall: Single line plotted at the face of the seawall. Hidden Hydrography: Hidden hydrography is not obvious, even to someone standing under a bridge for example; it cannot be seen photogrammetrically and can be captured only from other sources. Segments of rivers, streams, and canals that flow under features such as bridges and roads are captured as continuous portions of the river, stream, or canal.
Facebook
TwitterOperators interested in developing a CCUS project will need to have an understanding of surface hydrograpy, rivers, lakes, streams, etc. and how their project may impact or be impacted by these surface waters. This layer can be used to gain a planning level understanding of where waters exist in Alaska.The USGS National Hydrography Dataset (NHD) service from The National Map is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000 (or larger) scale and referred to as high resolution NHD, and the other based on 1:100,000 scale and referred to as medium resolution NHD. The NHD from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. The NHD is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map download client allows free downloads of public domain NHD data in either Esri File Geodatabase or Shapefile formats. For additional information on the NHD and to access the National Map download client or to download staged datasets, go to https://www.usgs.gov/national-hydrography/access-national-hydrography-products. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map service represents modeled streamflow metrics from the mid-century time period (2030-2059) in the United States. In addition to standard NHD attributes, the streamflow datasets include metrics on mean daily flow (annual and seasonal), flood levels associated with 1.5-year, 10-year, and 25-year floods; annual and decadal minimum weekly flows and date of minimum weekly flow, center of flow mass date; baseflow index, and average number of winter floods. These files and additional information are available on the project website, https://www.fs.usda.gov/rm/boise/AWAE/projects/modeled_stream_flow_metrics.shtml. Streams without flow metrics (null values) were removed from this dataset to improve display speed; to see all stream lines, use an NHD flowline dataset.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a file geodatabase download of SFWMD Arc Hydro Enhanced Database (AHED). This database includes hydrography feature classes such as canals, structures, and drainage areas.The Arc Hydro Enhanced Database (AHED) provides a geographically comprehensive database of hydrographic data features for the South Florida Water Management District (SFWMD).This file geodatabase includes relationship classes and domains. It contains the following feature classes:BasinSubbasinWatershedSubwatershedHydroedge (Canals)HydrojunctionStructureRainmeshRainAreaWaterbodyThese feature classes are also provided on this site as individual downloads. The AHED data is updated quarterly.