Facebook
TwitterMosaics are published as ArcGIS image serviceswhich circumvent the need to download or order data. GEO-IDS image services are different from standard web services as they provide access to the raw imagery data. This enhances user experiences by allowing for user driven dynamic area of interest image display enhancement, raw data querying through tools such as the ArcPro information tool, full geospatial analysis, and automation through scripting tools such as ArcPy. Image services are best accessed through the ArcGIS REST APIand REST endpoints (URL's). You can copy the OPS ArcGIS REST API link below into a web browser to gain access to a directory containing all OPS image services. Individual services can be added into ArcPro for display and analysis by using Add Data -> Add Data From Path and copying one of the image service ArcGIS REST endpoint below into the resultant text box. They can also be accessed by setting up an ArcGIS server connectionin ESRI software using the ArcGIS Image Server REST endpoint/URL. Services can also be accessed in open-source software. For example, in QGIS you can right click on the type of service you want to add in the browser pane (e.g., ArcGIS REST Server, WCS, WMS/WMTS) and copy and paste the appropriate URL below into the resultant popup window. All services are in Web Mercator projection. For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca Available Products: ArcGIS REST APIhttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/ Image Service ArcGIS REST endpoint / URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServerWeb Coverage Services (WCS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WCSServer/Web Mapping Service (WMS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WMSServer/ Metadata for all imagery products available in GEO-IDS can be accessed at the links below:South Central Ontario Orthophotography Project (SCOOP) 2023North-Western Ontario Orthophotography Project (NWOOP) 2022 Central Ontario Orthophotography Project (COOP) 2021 South-Western Ontario Orthophotography Project (SWOOP) 2020 Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2019-2020 South Central Ontario Orthophotography Project (SCOOP) 2018 North-Western Ontario Orthophotography Project (NWOOP) 2017 Central Ontario Orthophotography Project (COOP) 2016 South-Western Ontario Orthophotography Project (SWOOP) 2015 Algonquin Orthophotography Project (2015) Additional Documentation: Ontario Web Raster Services User Guide (Word) Status:Completed: Production of the data has been completed Maintenance and Update Frequency:Annually: Data is updated every year Contact:Geospatial Ontario (GEO), geospatial@ontario.ca
Facebook
TwitterA DOQQ is a computer generated image of an aerial photograph in which displacements caused by camera orientation and terrain have been removed. Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Transverse Mercator Projection (UTM) on the North American Datum of 1983 (NAD83).The geographic extent of the DOQ is equivalent to a quarter-quad plus The overedge ranges a minimum of 50 meters to a maximum of 300 meters beyond the extremes of the primary and secondary corner points. This dataset was rebuilt in ArcGIS Image Server using MrSID imagery for the data source. The JPG imagery that was used for the 2004 DOQQ dataset in ArcSDE Raster was found to have inaccurate colors. This dataset has been built using ArcGIS Image Server instead of ArcSDE Raster for easier maintenance and improved performance. The imagery included in this layer is flown from 2003-2005. Please contact GIS.Librarian@FloridaDEP.gov for more information.
Facebook
TwitterLicensing requirementsArcGIS Desktop – ArcGIS Image Analyst extension for ArcGIS ProArcGIS Enterprise – ArcGIS Image Server with raster analytics configuredArcGIS Online – ArcGIS Image for ArcGIS OnlineUsing the modelBefore using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS. Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.Input1. 8-bit, 3-band high-resolution (10 cm) imagery. The model was trained on 10 cm Vexcel imagery2. Building footprints feature classOutputFeature class containing classified building footprints. Classname field value 1 indicates damaged buildings, and value 2 corresponds to undamaged structuresApplicable geographiesThe model was specifically trained and tested over Maui, Hawaii, in response to the Maui fires in August 2023.Accuracy metricsThe model has an average accuracy of 0.96.Sample resultsResults of the models can be seen in this dashboard.
Facebook
TwitterThis deep learning model is used to detect trees in low-resolution drone or aerial imagery. Tree detection can be used for applications such as vegetation management, forestry, urban planning, etc. High resolution aerial and drone imagery can be used for tree detection due to its high spatio-temporal coverage.
This deep learning model is based on MaskRCNN and has been trained on data from the DM Dataset preprocessed and collected by the IST Team.
There is no need of high-resolution imagery you can perform all your analysis on low resolution imagery by detecting the trees with the accuracy of 75% and finetune the model to increase your performance and train on your own data.
Licensing requirements ArcGIS Desktop – ArcGIS Image Analyst and ArcGIS 3D Analyst extensions for ArcGIS Pro ArcGIS Enterprise – ArcGIS Image Server with raster analytics configured ArcGIS Online – ArcGIS Image for ArcGIS Online
Using the model Follow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.
Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.
Input 3-band low-resolution (70 cm) satellite imagery.
Output Feature class containing detected trees
Applicable geographies The model is expected to work well in the U.A.E.
Model architecture This model is based upon the MaskRCNN python package and uses the Resnet-152 model architecture implemented in pytorch.
Training data This model has been trained on the Satellite Imagery created and Labelled by the team and validated on the different locations with more diverse locations.
Accuracy metrics This model has an average precision score of 0.45.
Sample results Here are a few results from the model.
Facebook
TwitterThe DWR Enterprise image server has hundreds of image services, but there is no interface for searching or querying the server. The image server index contains footprints of the geographic extent of each available image service, as well as relevant attributes that describe the image service. There are also related tables for most types of image services that contain information specific to that type of data, such as specification numbers for design drawings or beam types for bathymetry data.
Facebook
TwitterSentinel-2 Level-1C imagery with on-the-fly renderings for visualization. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.Sentinel-2 imagery can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean Sea Temporal CoverageThis layer includes a rolling collection of Sentinel-2 imagery acquired within the past 14 months.This layer is updated daily with new imagery.The revisit time for each point on Earth is every 5 days.The number of images available will vary depending on location. Product LevelThis service provides Level-1C Top of Atmosphere imagery.Alternatively, Sentinel-2 Level-2A is also available. Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available within the past 14 months can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More… Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap. Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available. NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request. Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS, or alternatively access EarthExplorer or the Copernicus Data Space Ecosystem to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
Facebook
TwitterThis image service provides Three Inch resolution aerial imagery for the State of Maryland. The imagery for this service is composed of imagery flown in 2014 (Annapolis, Rockville and Gaithersburg) and 2016 (Easton). This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/imagery/rest/services/ThreeInch/MD_ThreeInchImagery/ImageServer
Facebook
TwitterThis service provides Six Inch resolution aerial imagery for the State of Maryland. The imagery for this service is composed of imagery flown in 2023 (Western Shore) and 2024 (Eastern Shore).This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/imagery/rest/services/SixInch/SixInchImagery/ImageServer
Facebook
TwitterImage Visit is a configurable app template that allows users to quickly review the attributes of a predetermined sequence of locations in imagery. The app optimizes workflows by loading the next image while the user is still viewing the current image, reducing the delay caused by waiting for the next image to be returned from the server.Image Visit users can do the following:Navigate through a predetermined sequence of locations two ways: use features in a 'Visit' layer (an editable hosted feature layer), or use a web map's bookmarks.Use an optional 'Notes' layer (a second editable hosted feature layer) to add or edit features associated with the Visit locations.If the app uses a Visit layer for navigation, users can edit an optional 'Status' field to set the status of each Visit location as it's processed ('Complete' or 'Incomplete,'' for example).View metadata about the Imagery, Visit, and Notes layers in a dialog window (which displays information based on each layer's web map popup settings).Annotate imagery using editable feature layersPerform image measurement on imagery layers that have mensuration capabilitiesExport an imagery layer to the user's local machine, or as layer in the user’s ArcGIS accountUse CasesAn insurance company checking properties. An insurance company has a set of properties to review after an event like a hurricane. The app would drive the user to each property, and allow the operator to record attributes (the extent of damage, for example). Image analysts checking control points. Organizations that collect aerial photography often have a collection of marked or identifiable control points that they use to check their photographs. The app would drive the user to each of the known points, at a suitable scale, then allow the user to validate the location of the control point in the image. Checking automatically labeled features. In cases where AI is used for object identification, the app would drive the user to identified features to review/correct the classification. Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsCreating an app with this template requires a web map with at least one imagery layer.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageClick the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Facebook
TwitterBeta Notice: This item is currently in beta and is intended for early access, testing, and feedback. It is not recommended for production use, as functionality and content are subject to change without notice.Sentinel-2, 10m Multispectral 13-band imagery, rendered on-the-fly. Available for visualization and analytics, this Imagery Layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be used for multiple purposes including but not limited to vegetation, plant health, land cover and environmental monitoring.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free image, for any location, is displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is Color-Infrared (bands 8,4,3) with Dynamic Range Adjustment (DRA).This DRA version enables visualization of the full dynamic range of the images. The non-DRA version of this layer can be viewed by switching to the pre-defined Color Infrared raster function.Bands near-infrared, red, green with dynamic range adjustment applied. Healthy vegetation is bright red while stressed vegetation is dull red.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap.Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
Facebook
TwitterThis series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. There are four True Color products in total. For each satellite (Aqua and Terra) there is a 250 meter corrected reflectance product and a 500 meter surface reflectance product. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this map is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.
Facebook
Twitterhttps://geoportal.cuzk.gov.cz/Dokumenty/Podminky.pdfhttps://geoportal.cuzk.gov.cz/Dokumenty/Podminky.pdf
IMAGE služba Esri ArcGIS Server - DMP 1G je poskytována jako veřejná služba pro využití datové sady Digitální model povrchu České republiky 1. generace (DMP 1G). Rozhraní služby poskytuje data ve formě stínovaného modelu povrchu (v šedé škále nebo obarveného), případně umožňuje zobrazit data podle orientace nebo sklonitosti svahů. Dále lze službu využít (v různých souřadnicových systémech, definovaných v capabilities) i prostřednictvím standardu WMS.
Facebook
TwitterWelcome to the LandsatLook Viewer!The LandsatLook Viewer is a prototype tool that was developed to allow rapid online viewing and access to the USGS Landsat image archives. This viewer allows you to:Interactively explore the Landsat archive at up to full resolution directly from a common web browserSearch for specific Landsat images based on area of interest, acquisition date, or cloud coverCompare image features and view changes through timeDisplay configurable map information layers in combination with the Landsat imageryCreate a customized image display and export as a simple graphic fileView metadata and download the full-band source imagerySearch by address or place, or zoom to a point, bounding box, or Sentinel-2 Tile or Landsat WRS-1 or WRS-2 Path/RowGenerate and download a video animation of the oldest to newest images displayed in the viewerWe welcome feedback and input for future versions of this Viewer! Please provide your comments or suggestions .About the ImageryThis viewer provides visual and download access to the USGS LandsatLook "Natural Color" imageproduct archive.BackgroundThe Landsat satellites have been collecting multispectral images of Earth from space since 1972. Each image contains multiple bands of spectral information which may require significant user time, system resources, and technical expertise to obtain a visual result. As a result, the use and access to Landsat data has been historically limited to the scientific and technical user communities.The LandsatLook “Natural Color” image product option was created to provide Landsat imagery in a simple user-friendly and viewer-ready format, based on specific bands that have been selected and arranged to simulate natural color. This type of product allows easy visualization of the archived Landsat image without any need for specialized software or technical expertise.LandsatLook ViewerThe LandsatLook Viewer displays the LandsatLook Natural Color image product for all Landsat 1-8 images in the USGS archive and was designed primarily for visualization purposes.The imagery within this Viewer will be of value to anyone who wants to quickly see the full Landsat record for an area, along with major image features or obvious changes to Earth’s surface through time. An area of interest may be extracted and downloaded as a simple graphic file directly through the viewer, and the original full image tile is also available if needed. Any downloaded LandsatLook image product is a georeferenced file and will be compatible within most GIS and Web mapping applications.If the user needs to perform detailed technical analysis, the full bands of Landsat source data may also be accessed through direct links provided on the LandsatLook Viewer.Image ServicesThe imagery that is visible on this LandsatLook Viewer is based on Web-based ArcGIS image services. The underlying REST service endpoints for the LandsatLook imagery are available at https://landsatlook.usgs.gov/arcgis/rest/services/LandsatLook/ImageServer .Useful linksLandsat- Landsat Mission (USGS)- Landsat Science (NASA)LandsatLook- Product Description- USGS Fact Sheet- LandsatLook image services (REST)Landsat Products- Landsat 8 OLI/TIRS- Landsat 7 ETM+- Landsat 4-5 TM- Landsat 1-5 MSS- Landsat Band DesignationsLandsatLook images are full-resolution files derived from Landsat Level-1 data products. The images are compressed and stretched to create an image optimized for image selection and visual interpretation. It is recommended that these images not be used in image analysis.LandsatLook image files are included as options when downloading Landsat scenes from EarthExplorer, GloVis, or the LandsatLook Viewer (See Figure 1).Figure 1. LandsatLook and Level-1 product download optionsLandsatLook Natural Color ImageThe LandsatLook Natural Color image is a .jpg composite of three bands to show a “natural” looking (false color) image. Reflectance values were calculated from the calibrated scaled digital number (DN) image data. The reflectance values were scaled to a 1-255 range using a gamma stretch with a gamma=2.0. This stretch was designed to emphasize vegetation without clipping the extreme values.Landsat 8 OLI = Bands 6,5,4Landsat 7 ETM+ and Landsat 4-5 TM = Bands 5,4,3Landsat 4-5 MSS = Bands 2,4,1Landsat 1-3 MSS = Bands 7,5,4LandsatLook Thermal ImageThe LandsatLook Thermal image is a one-band gray scale .jpg image that displays thermal properties of a Landsat scene. Image brightness temperature values were calculated from the calibrated scaled digital number (DN) image data. An image specific 2 percent clip and a linear stretch to 1-255 were applied to the brightness temperature values.Landsat 8 TIRS = Band 10Landsat 7 ETM+ = Band 61-high gainLandsat 4-5 TM = Band 6Landsat 1-5 MSS = not availableLandsatLook Quality ImageLandsatLook Quality images are 8-bit files generated from the Landsat Level-1 Quality band to provide a quick view of the quality of the pixels within the scene to determine if a particular scene would work best for the user's application. This file includes values representing bit-packed combinations of surface, atmosphere, and sensor conditions that can affect the overall usefulness of a given pixel. Color mapping assignments can be seen in the tables below. For each Landsat scene, LandsatLook Quality images can be downloaded individually in .jpg format, or as a GeoTIFF format file (_QB.TIF) within the LandsatLook Images with Geographic Reference file.Landsat Collection 1 LandsatLook 8-bit Quality Images DesignationsLandsat 8 OLI/TIRSLandsat 7 ETM+, Landsat 4-5 TMLandsat 1-5 MSSColorBitDescriptionBitDescriptionBitDescription 0Designated Fill0Designated Fill0Designated Fill 1Terrain Occlusion1Dropped Pixel1Dropped Pixel 2Radiometric Saturation 2Radiometric Saturation 2Radiometric Saturation 3Cloud3Cloud3Cloud 4Cloud Shadow4Cloud Shadow 4Unused 5Snow/Ice 5Snow/Ice 5Unused 6Cirrus 6Unused6Unused 7Unused7Unused7UnusedUnusedTable 1. Landsat Collection 1 LandsatLook 8-bit Quality Images Designations LandsatLook Images with Geographic ReferenceThe LandsatLook Image with Geographic Reference is a .zip file bundle that contains the Natural Color, Thermal, and the 8-bit Quality images in georeferenced GeoTiff (.TIF) file format.Figure 2. LandsatLook Natural Color Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 3. LandsatLook Thermal Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 4. LandsatLook Quality Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013 with background color set to dark grey. Additional Information About LandsatLook ImagesMany geographic information systems and image processing software packages easily support .jpg images. To create these files, Landsat data is mapped to a 1-255 range, with the fill area set to zero (if a no-data value is set to zero, the compression algorithm may introduce zero-value artifacts into the data area causing very dark data values to be displayed as no-data).
Facebook
Twitter[Metadata] This layer contains the collection dates of the imagery contained in the image service shown here: https://geodata.hawaii.gov/arcgis/rest/services/SoH_Imagery/Vivid_2022/ImageServer. Source: USDA Farm Production and Conservation Business Center Geospatial Operations Group, April, 2023.For additional information, please see https://files.hawaii.gov/dbedt/op/gis/data/Vivid_2022_Metadata.pdf, or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterIMAGE služba Esri ArcGIS Server - DMR 5G je poskytována jako veřejná služba pro využití datové sady Digitální model reliéfu České republiky 5. generace (DMR 5G). Zdrojová data pro službu jsou umístěna v souřadnicovém systému WGS 84 / Pseudo-Mercator (EPSG 3857 alias 900913). Rozhraní služby poskytuje data ve formě stínovaného modelu reliéfu (v šedé škále nebo obarveného), případně umožňuje zobrazit data podle orientace nebo sklonitosti svahů. Dále lze službu využít (v různých souřadnicových systémech, definovaných v capabilities) i prostřednictvím standardu WMS.
Facebook
TwitterThe National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental United States. This service contains NAIP imagery from 2015 in the Web Mercator projection.This is a MD iMAP hosted service. Find more information on https://imap.maryland.gov.Image Service Layer:https://mdgeodata.md.gov/imagery/rest/services/NAIP/NAIPImagery2015/ImageServer
Facebook
TwitterAn ArcGIS Server Service running from GNS's server: topography/nzdtm - use it to provide a visual reference (background)_Item Page Created: 2017-08-30 21:49 Item Page Last Modified: 2025-04-05 18:47Owner: steinmetzt_NIWA
Facebook
TwitterDigital Elevation Model from Lidar (2013-2021), with values in meters and feet. Image service published by MassGIS from ArcGIS Server.The DEM was created from Light Detection and Ranging (Lidar) terrain and elevation data that cover the entirety of Massachusetts. This DEM is based on the best available lidar data, as described at the Lidar Terrain Data page. The DEM is a 16-bit signed integer raster dataset and has a 0.5 meter pixel resolution.This image service is the source for the values appearing in the popup in the Massachusetts Elevation Finder application.
Facebook
TwitterThis layer is designed to support exporting small volumes of basemap tiles for offline use. The content of this layer is equivalent to World Imagery. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. See World Imagery for more details.The map service supporting this layer will enable you to export up to 150,000 tiles in a single request. For estimation purposes, this is large enough to support the export of:Large city (e.g. San Francisco) down to full level of detail at ~1:1,000 scale (Level 19)Medium size state or province (e.g. Colorado) down to scale of ~1:36,000 (Level 14)Medium to large country (e.g. Continental United States) down to scale of ~1:288,000 (Level 11)This layer is not intended to be used to display live map tiles for use in a web map or web mapping application. To display map tiles, please use World Imagery basemap.Service Information for DevelopersTo export tiles for World Imagery, you must use the instance of the World_Imagery service hosted on the tiledbasemaps.arcgis.com server referenced by this layer (see URL in Contents below), which has the Export Tiles operation enabled. This layer is intended to support export of basemap tiles for offline use in ArcGIS applications and other applications built with an ArcGIS Runtime SDK.
Facebook
TwitterMosaics are published as ArcGIS image serviceswhich circumvent the need to download or order data. GEO-IDS image services are different from standard web services as they provide access to the raw imagery data. This enhances user experiences by allowing for user driven dynamic area of interest image display enhancement, raw data querying through tools such as the ArcPro information tool, full geospatial analysis, and automation through scripting tools such as ArcPy. Image services are best accessed through the ArcGIS REST APIand REST endpoints (URL's). You can copy the OPS ArcGIS REST API link below into a web browser to gain access to a directory containing all OPS image services. Individual services can be added into ArcPro for display and analysis by using Add Data -> Add Data From Path and copying one of the image service ArcGIS REST endpoint below into the resultant text box. They can also be accessed by setting up an ArcGIS server connectionin ESRI software using the ArcGIS Image Server REST endpoint/URL. Services can also be accessed in open-source software. For example, in QGIS you can right click on the type of service you want to add in the browser pane (e.g., ArcGIS REST Server, WCS, WMS/WMTS) and copy and paste the appropriate URL below into the resultant popup window. All services are in Web Mercator projection. For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca Available Products: ArcGIS REST APIhttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/ Image Service ArcGIS REST endpoint / URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServerWeb Coverage Services (WCS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WCSServer/Web Mapping Service (WMS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WMSServer/ Metadata for all imagery products available in GEO-IDS can be accessed at the links below:South Central Ontario Orthophotography Project (SCOOP) 2023North-Western Ontario Orthophotography Project (NWOOP) 2022 Central Ontario Orthophotography Project (COOP) 2021 South-Western Ontario Orthophotography Project (SWOOP) 2020 Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2019-2020 South Central Ontario Orthophotography Project (SCOOP) 2018 North-Western Ontario Orthophotography Project (NWOOP) 2017 Central Ontario Orthophotography Project (COOP) 2016 South-Western Ontario Orthophotography Project (SWOOP) 2015 Algonquin Orthophotography Project (2015) Additional Documentation: Ontario Web Raster Services User Guide (Word) Status:Completed: Production of the data has been completed Maintenance and Update Frequency:Annually: Data is updated every year Contact:Geospatial Ontario (GEO), geospatial@ontario.ca