Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.
Follow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.
ArcGIS Pro is a different experience. It introduces a project-based file structure, terminology changes, and brand-new tools and capabilities (which you will very likely love once you get used to them). The courses and resources below will clarify the major differences between ArcMap and ArcGIS Pro and help you conquer the learning curve. Goals Understand key ArcGIS Pro terminology. Import map documents, geoprocessing models, and other ArcMap-created items into ArcGIS Pro. Access tools and functionality through the ArcGIS Pro ribbon-based interface.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Instructions on how to make an ArcGIS map, add georeferenced points, adjust appearances , configure pop up boxes, upload images and sharing a map. Introduces students to ArcGIS mapping. Students learn how to organize and upload designated places onto an ArcGIS map. Students learn how to configure pop-up boxes for each designated place and populate them with information they have uncovered. Students learn how to add images to their designated places on their maps. Once completed, students learn how to import into other media i.e. StoryMaps, Word documents to tell a bigger story about the places on the map.
For more information about this tool see Batch Metadata Modifier Tool Toolbar Help.Modifying multiple files simultaneously that don't have identical structures is possible but not advised. Be especially careful modifying repeatable elements in multiple files that do not have and identical structureTool can be run as an ArcGIS Add-In or as a stand-alone Windows executableExecutable runs on PC only. (Not supported on Mac.)The ArcGIS Add-In requires ArcGIS Desktop version 10.2 or 10.3Metadata formats accepted: FGDC CSDGM, ArcGIS 1.0, ArcGIS ISO, and ISO 19115Contact Bruce Godfrey (bgodfrey@uidaho.edu, Ph. 208-292-1407) if you have questions or wish to collaborate on further developing this tool.Modifying and maintaining metadata for large batches of ArcGIS items can be a daunting task. Out-of-the-box graphical user interface metadata tools within ArcCatalog 10.x are designed primarily to allow users to interact with metadata for one item at a time. There are, however, a limited number of tools for performing metadata operations on multiple items. Therefore, the need exists to develop tools to modify metadata for numerous items more effectively and efficiently. The Batch Metadata Modifier Tools toolbar is a step in that direction. The Toolbar, which is available as an ArcGIS Add-In, currently contains two tools. The first tool, which is additionally available as a standalone Windows executable application, allows users to update metadata on multiple items iteratively. The tool enables users to modify existing elements, find and replace element content, delete metadata elements, and import metadata elements from external templates. The second tool of the Toolbar, a batch thumbnail creator, enables the batch-creation of the graphic that appears in an item’s metadata, illustrating the data an item contains. Both of these tools make updating metadata in ArcCatalog more efficient, since the tools are able to operate on numerous items iteratively through an easy-to-use graphic interface.This tool, developed by INSIDE Idaho at the University of Idaho Library, was created to assist researchers with modifying FGDC CSDGM, ArcGIS 1.0 Format and ISO 19115 metadata for numerous data products generated under EPSCoR award EPS-0814387.This tool is primarily designed to be used by those familiar with metadata, metadata standards, and metadata schemas. The tool is for use by metadata librarians and metadata managers and those having experience modifying standardized metadata. The tool is designed to expedite batch metadata maintenance. Users of this tool must fully understand the files they are modifying. No responsibility is assumed by the Idaho Geospatial Data Clearinghouse or the University of Idaho in the use of this tool. A portion of the development of this tool was made possible by an Idaho EPSCoR Office award.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature layer contains the locations of Natural Gas Import/Export Pipeline Facilities along the borders between the Continental United States, Canada, and Mexico for the Homeland Infrastructure Foundation-Level (HIFLD) Database (https://hifld-dhs-gii.gov/HIFLD) as well as the Energy modeling and simulation community. A Natural Gas Import/Export Pipeline Facility delivers natural gas in and out of the Continental United States between foreign countries.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
With gdown.pl, users can import any public files from Google Drive, which bypasses the file format check / file size limitation by ArcGIS Online and the direct downloading limitation by Google Drive. This notebook consists of a simple script (and description).
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben
This non-exclusive report was purchased by the OGA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the OGA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities.
The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report.
The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms).
In addition, the OGA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the OGA well names from the OGA Offshore Wells shapefile (as provided on the OGA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the OGA. OGA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the OGA.
A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the OGA’s Open Data website for use in other GIS software packages.
All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the OGA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇬🇧 영국 English Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben This non-exclusive report was purchased by the NSTA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the NSTA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities. The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report. The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms). In addition, the NSTA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the NSTA well names from the NSTA Offshore Wells shapefile (as provided on the NSTA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the NSTA. NSTA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the NSTA. A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the NSTA’s Open Data website for use in other GIS software packages. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the NSTA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Point feature class and related table containing the Precise Surveys measurement time series. Measurements include elevations, Northings and Eastings, distances, and point-to-point measurements. Northing and Easting measurements are in CA State Plane Coordinate systems, Elevations measurements are provided in NAVD88 or NGVD29. This dataset is for data exploration only. These measurements and point locations are not considered survey-grade since there may be nuances such as epochs, adjustments, and measurement methods that are not fully reflected in the GIS data. These values are not considered authoritative values and should not be used in-lieu of actual surveyed values provided by a licensed land surveyor. Related data and time series are stored in a table connected to the point feature class via a relationship class. There may be multiple table entries and time series associated to a single mark. Data was assembled through an import of Excel tables and import of mark locations in ArcGIS Pro. Records were edited by DOE, Geomatics, GDSS to resolve any non-unique mark names. This dataset was last updated 4/2024.
This geospatial dataset was created by uploading a shapefile through the new import experience (DSMUI). The original shapefile is attached and was downloaded from https://data-seattlecitygis.opendata.arcgis.com/datasets/municipal-boundaries.
The purpose of the�Natural Resources Atlas�is to provide geographic information about environmental features and sites that the Vermont Agency of Natural Resources manages, monitors, permits, or regulates. In addition to standard map navigation tools, this site allows you to link from sites to documents where available, generate reports, export search results, import data, search, measure, mark-up, query map features, and print PDF maps.
SSURGO-QA ArcGIS Pro Toolbox1. SetupDownload SSURGO by Areasymbol - Use Soil Data Access and Web Soil Survey download page to get SSURGO datasets. User can a wildcard to query the database by Areasymbol or by age.Download SSURGO by Region - Downloads SSURGO Soil Survey Areas that are owned by a specific region including an approximiate 2 soil survey area buffer.Generate Regional Transactional Geodatabase - Used to create the Regional Transactional Spatial Database (RTSD) for SSURGO.Generate SSO SSURGO Datasets - Create a SSURGO file geodatabase for a selected MLRA Soil Survey Office.Import SSURGO Datasets in FGDB - This tooll will import SSURGO spatial and tabular datasets within a given location into a File Geodatabase and establish the necessary table and feature class relationships to interact with the dataset.Insert NATSYM and MUNAME Value - This tool adds the National Mapunit Symbol (NATMUSYM) and the Mapunit Name (MUNAME) values to the corresponding MUKEY. An MUKEY field is required to execute. A network connection is required in order to submit a query to SDacess.RTSD - Check SDJR Project Out - Designed to work with the RTSD to manage SDJR projects and export data for those projects to be sent to the MLRA SSO.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
RAV Network information periodically changes with additions or removal of data and users should confirm that information is current and accurate. The RAV Network Road Tables and RAV Mapping Tool can be found on the Main Roads Western Australia website, refer Hyperlink below.https://www.mainroads.wa.gov.au/heavy-vehicles/Main Roads Open Data: Restricted Access Networkshttps://portal-mainroads.opendata.arcgis.com/pages/hvs-networksUpdate Frequency: WeeklySpatial Coverage: Western AustraliaLegalYou are accessing this data pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes. Main Roads WA website is the official and current source of RAV Network data.Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material and when you Share your Adapted Material: The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability. Main Roads WA website is the official and current source of RAV Network data.Licensinghttps://creativecommons.org/licenses/by/4.0/legalcode
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
RAV Network information periodically changes with additions or removal of data and users should confirm that information is current and accurate. The RAV Network Road Tables and RAV Mapping Tool can be found on the Main Roads Western Australia website, refer Hyperlink below.https://www.mainroads.wa.gov.au/heavy-vehicles/Main Roads Open Data: Restricted Access Networkshttps://portal-mainroads.opendata.arcgis.com/pages/hvs-networksUpdate Frequency: WeeklySpatial Coverage: Western AustraliaLegalYou are accessing this data pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes. Main Roads WA website is the official and current source of RAV Network data.Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material and when you Share your Adapted Material: The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability. Main Roads WA website is the official and current source of RAV Network data.Licensinghttps://creativecommons.org/licenses/by/4.0/legalcode
For more information about this tool see Batch Metadata Modifier Tool Toolbar Help.Modifying multiple files simultaneously that don't have identical structures is possible but not advised. Be especially careful modifying repeatable elements in multiple files that do not have and identical structureTool can be run as an ArcGIS Add-In or as a stand-alone Windows executableExecutable runs on PC only. (Not supported on Mac.)The ArcGIS Add-In requires ArcGIS Desktop version 10.2 or 10.3Metadata formats accepted: FGDC CSDGM, ArcGIS 1.0, ArcGIS ISO, and ISO 19115Contact Bruce Godfrey (bgodfrey@uidaho.edu) if you have questions or wish to collaborate on further developing this tool.Modifying and maintaining metadata for large batches of ArcGIS items can be a daunting task. Out-of-the-box graphical user interface metadata tools within ArcCatalog 10.x are designed primarily to allow users to interact with metadata for one item at a time. There are, however, a limited number of tools for performing metadata operations on multiple items. Therefore, the need exists to develop tools to modify metadata for numerous items more effectively and efficiently. The Batch Metadata Modifier Tools toolbar is a step in that direction. The Toolbar, which is available as an ArcGIS Add-In, currently contains two tools. The first tool, which is additionally available as a standalone Windows executable application, allows users to update metadata on multiple items iteratively. The tool enables users to modify existing elements, find and replace element content, delete metadata elements, and import metadata elements from external templates. The second tool of the Toolbar, a batch thumbnail creator, enables the batch-creation of the graphic that appears in an item’s metadata, illustrating the data an item contains. Both of these tools make updating metadata in ArcCatalog more efficient, since the tools are able to operate on numerous items iteratively through an easy-to-use graphic interface.This tool, developed by INSIDE Idaho at the University of Idaho Library, was created to assist researchers with modifying FGDC CSDGM, ArcGIS 1.0 Format and ISO 19115 metadata for numerous data products generated under EPSCoR award EPS-0814387.This tool is primarily designed to be used by those familiar with metadata, metadata standards, and metadata schemas. The tool is for use by metadata librarians and metadata managers and those having experience modifying standardized metadata. The tool is designed to expedite batch metadata maintenance. Users of this tool must fully understand the files they are modifying. No responsibility is assumed by the Idaho Geospatial Data Clearinghouse or the University of Idaho in the use of this tool. A portion of the development of this tool was made possible by an Idaho EPSCoR Office award.
This data set contains GPS data collected by the FDEP Bureau of Surveying and Mapping (BSM). Data was first imported from the NGS Online Positional User Service (OPUS). On 1/10/2017 the import was performed based on all OPUS submittals performed by Rudolphe Konou of FDEP BSM. The file was imported to a geodatabase. Some of the original fields were dropped from the data set and some maintenance of the other fields was performed to match BSM needs for a web application.Since inception, the file is updated via a Geoform as solutions are returned to FDEP from OPUS. Point of Contact:Bryan Shoaf, FDEP Division of State Lands850-245-2619bryan.shoaf@dep.state.fl.us
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The map package files (merged.mpk) were prepared and can be opened by Arc Gis 10.8.2 and above versions. The map package data files include the SAR data (RISAT-1 from ISRO-Bhoonidhi) in HH,HV- polarizations, DEM ( USGS ) and IRS LISS III (Bhuvan-NRSC) data with the 30m spatial resolution were downloaded from the respective websites. Geology data in 1:50,000 scale is downloaded from GSI Bhukosh. The resolution merged data of Optical and SAR data has been prepared using Brovey transform in ERDAS 2015 software. The output file have advantages of both optical and microwave features. Extracted the Lineaments(.shp) from the coupled data of merged SAR and improved and verified with the DEM, Optical, SAR and Geology data sets. All these data generation and Statistical calculation done with the help of ArcGIS software. ArcGIS guide will help to create shape files, Attribute table calculations of length, classification. Azumutal trend calculations of each lineaments done using Split lines and other geometric calculations giving the trend of each lineament and finally export the map (All .jpg files). Rose diagrams was prepared based on the trend of lineaments with the help of Rockworks 17 software. The generated Azimuthal trend data in lineament shape file can be import to linears - utilites - Rose diagram. I was prepared Rose diagram of different class of lineaments using frequency calculation method. Lineaments are the linear geological features can extend from few meters to hundreds of kms. Geologically lineaments are either structural or stratigraphical, typically it will comprise fault, fold axis, bedding contacts, dyke intrusions, shear zone or a straight coast line. Mapping lineaments using remote sensing is economical, faster can act as a preliminary study. Generally lineaments have been mapped using the optical remote sensing data such as Landsat, Resourcesat etc. For India, Lineaments were mapped using the LISS III and LISS IV of Resourcesat-1 & 2 at a scale of 1:50k. However in tropical region like India, limited exposure of ground due to vegetation cover, lineaments may go unnoticed in optical remote sensing data. This problem can be overcome by Synthetic Aperture Radar (SAR) data, which can penetrate ground significantly. With the launch of RISAT-1satelite, data availability of SAR data is immense for Indian region. Aim of this study to explore the SAR data and merged SAR and optical data for lineament mapping.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.