100+ datasets found
  1. Interpolate 3D Oxygen Measurements in Monterey Bay

    • hub.arcgis.com
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2019). Interpolate 3D Oxygen Measurements in Monterey Bay [Dataset]. https://hub.arcgis.com/documents/18a6337067aa46acb0dd51ec01a7eaa1
    Explore at:
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Area covered
    Monterey Bay
    Description

    Deoxygenation of the oceans is one of the most important issues in oceanography today. Using dissolved oxygen measurements taken at various depths in Monterey Bay, California, you'll perform a 3D geostatistical interpolation to predict the oxygen levels throughout the entire bay.In this lesson you will build skills in these areas: - Charting data with histograms and scatter plots in ArcGIS Pro- Interpolating 3D measurements- Comparing 2D interpolation- Exporting rasters - Creating a 3D animationLearn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

  2. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  3. a

    2023 Irrigated Lands for the Mountain Home Plateau: Machine Learning...

    • data-idwr.hub.arcgis.com
    • gis-idaho.hub.arcgis.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Idaho Department of Water Resources (2024). 2023 Irrigated Lands for the Mountain Home Plateau: Machine Learning Generated [Dataset]. https://data-idwr.hub.arcgis.com/documents/b5c6474cb4ae459480bb804127c4831e
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Idaho Department of Water Resources
    Description

    This raster file represents land within the Mountain Home study boundary classified as either “irrigated” with a cell value of 1 or “non-irrigated” with a cell value of 0 at a 10-meter spatial resolution. These classifications were determined at the pixel level by use of Random Forest, a supervised machine learning algorithm. Classification models often employ Random Forest due to its accuracy and efficiency at labeling large spatial datasets. To build a Random Forest model and supervise the learning process, IDWR staff create pre-labeled data, or training points, which are used by the algorithm to construct decision trees that will be later used on unseen data. Model accuracy is determined using a subset of the training points, otherwise known as a validation dataset. Several satellite-based input datasets are made available to the Random Forest model, which aid in distinguishing characteristics of irrigated lands. These characteristics allow patterns to be established by the model, e.g., high NDVI during summer months for cultivated crops, or consistently low ET for dryland areas. Mountain Home Irrigated Lands 2023 employed the following input datasets: US Geological Survey (USGS) products, including Landsat 8/9 and 10-meter 3DEP DEM, and European Space Agency (ESA) Copernicus products, including Harmonized Sentinel-2 and Global 30m Height Above Nearest Drainage (HAND). For the creation of manually labeled training points, IDWR staff accessed the following datasets: NDVI derived from Landsat 8/9, Sentinel-2 CIR imagery, US Department of Agriculture National Agricultural Statistics Service (USDA NASS) Cropland Data Layer, Active Water Rights Place of Use data from IDWR, and USDA’s National Agriculture Imagery Program (NAIP) imagery. All datasets were available for the current year of interest (2023). The published Mountain Home Irrigated Lands 2023 land classification raster was generated after four model runs, where at each iteration, IDWR staff added or removed training points to help improve results. Early model runs showed poor results in riparian areas near the Snake River, concentrated animal feeding operations (CAFOs), and non-irrigated areas at higher elevations. These issues were resolved after several model runs in combination with post-processing masks. Masks used include Fish and Wildlife Service’s National Wetlands Inventory (FWS NWI) data. These data were amended to exclude polygons overlying irrigated areas, and to expand riparian area in specific locations. A manually created mask was primarily used to fill in areas around the Snake River that the model did not uniformly designate as irrigated. Ground-truthing and a thorough review of IDWR’s water rights database provided further insight for class assignments near the town of Mayfield. Lastly, the Majority Filter tool in ArcGIS was applied using a kernel of 8 nearest neighbors to smooth out “speckling” within irrigated fields. The masking datasets and the final iteration of training points are available on request. Information regarding Sentinel and Landsat imagery:All satellite data products used within the Random Forest model were accessed via the Google Earth Engine API. To find more information on Sentinel data used, query the Earth Engine Data Catalog https://developers.google.com/earth-engine/datasets) using “COPERNICUS/S2_SR_HARMONIZED.” Information on Landsat datasets used can be found by querying “LANDSAT/LC08/C02/T1_L2” (for Landsat 8) and “LANDSAT/LC09/C02/T1_L2” (for Landsat 9).Each satellite product has several bands of available data. For our purposes, shortwave infrared 2 (SWIR2), blue, Normalized Difference Vegetation Index (NDVI), and near infrared (NIR) were extracted from both Sentinel and Landsat images. These images were later interpolated to the following dates: 2023-04-15, 2023-05-15, 2023-06-14, 2023-07-14, 2023-08-13, 2023-09-12. Interpolated values were taken from up to 45 days before and after each interpolated date. April-June interpolated Landsat images, as well as the April interpolated Sentinel image, were not used in the model given the extent of cloud cover overlying irrigated area. For more information on the pre-processing of satellite data used in the Random Forest model, please reach out to IDWR at gisinfo@idwr.idaho.gov.

  4. d

    Map 09: ArcGIS layer showing contours of the 50 percentile of water levels...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Map 09: ArcGIS layer showing contours of the 50 percentile of water levels from all months during the 2000-2009 water years (feet) [Dataset]. https://catalog.data.gov/dataset/map-09-arcgis-layer-showing-contours-of-the-50-percentile-of-water-levels-from-all-months-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  5. d

    CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010)

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig Rasmussen; Matej Durcik (2021). CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010) [Dataset]. https://search.dataone.org/view/sha256%3Af79c5b6ae39494aa0732981635ad3e39b5f731343ea03de995bc59a1c67ceb6b
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Craig Rasmussen; Matej Durcik
    Time period covered
    Jan 1, 2010 - Dec 31, 2010
    Area covered
    Description

    Yearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Catalina Mountains by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).

  6. a

    Findlay 1 Reservoir data - contours

    • gis-odnr.opendata.arcgis.com
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ohio Department of Natural Resources (2024). Findlay 1 Reservoir data - contours [Dataset]. https://gis-odnr.opendata.arcgis.com/datasets/findlay-1-reservoir-data-contours
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    Ohio Department of Natural Resources
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Download .zipThis file contains the data used by the Division of Wildlife for the construction of lake maps. Data was collected in the Ohio State Plane Coordinate System for both the northern and southern state planes in the Lambert Projection Zone. Except for the lakes in extreme western Ohio which is in UTM zone 16N the majority of lakes are in UTM zone 17N and datum NAD83. Data were collected by the Ohio Division of Wildlife using a Trimble GPS Pathfinder Pro XRS receiver and Recon datalogger. Geocoding of depths typically occurred during water levels that were ± 60 cm of full recreational pool while transversing the reservoir at 100m intervals driving at a vessel speed of 2.0-2.5 m/s. Depth contour lines were derived by creating a raster file from the point bathymetry and boundary lake data. ArcGIS Spatial Analyst Interpolation tool outputs point data that is then changed into polyline contours using the Spatial Analyst Surface tool. Additional details on the digitizing process are available upon request.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesDivision of Wildlife2045 Morse Rd, Bldg G-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov

  7. d

    Map 12: ArcGIS layer showing contours of the difference in May Mean water...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Map 12: ArcGIS layer showing contours of the difference in May Mean water levels from the water-year periods 1990 to 1999 and 2000 to 2009 (feet) [Dataset]. https://catalog.data.gov/dataset/map-12-arcgis-layer-showing-contours-of-the-difference-in-may-mean-water-levels-from-the-w
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  8. a

    La Su An Lavere data - contours

    • hub.arcgis.com
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ohio Department of Natural Resources (2024). La Su An Lavere data - contours [Dataset]. https://hub.arcgis.com/documents/63f751b5288a4f5085bd96d8b2c1c308
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    Ohio Department of Natural Resources
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Download .zipThis file contains the data used by the Division of Wildlife for the construction of lake maps. Data was collected in the Ohio State Plane Coordinate System for both the northern and southern state planes in the Lambert Projection Zone. Except for the lakes in extreme western Ohio which is in UTM zone 16N the majority of lakes are in UTM zone 17N and datum NAD83. Data were collected by the Ohio Division of Wildlife using a Trimble GPS Pathfinder Pro XRS receiver and Recon datalogger. Geocoding of depths typically occurred during water levels that were ± 60 cm of full recreational pool while transversing the reservoir at 100m intervals driving at a vessel speed of 2.0-2.5 m/s. Depth contour lines were derived by creating a raster file from the point bathymetry and boundary lake data. ArcGIS Spatial Analyst Interpolation tool outputs point data that is then changed into polyline contours using the Spatial Analyst Surface tool. Additional details on the digitizing process are available upon request.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesDivision of Wildlife2105 Morse Rd, Bldg G-2Columbus, OH, 43289Telephone: 614-265-6522Email: gis.support@dnr.ohio.gov

  9. Sea Surface Temperature (Optimum Interpolation)

    • climate.esri.ca
    • climat.esri.ca
    • +3more
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Sea Surface Temperature (Optimum Interpolation) [Dataset]. https://climate.esri.ca/maps/d6efd3aef35f4efebe3dae59da123312
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature (OISST) is a long term Climate Data Record that incorporates observations from different platforms (satellites, ships, buoys and Argo floats) into a regular global grid. The dataset is interpolated to fill gaps on the grid and create a spatially complete map of sea surface temperature. Satellite and ship observations are referenced to buoys to compensate for platform differences and sensor biasesMore Info: https://www.ncei.noaa.gov/products/optimum-interpolation-sst

  10. d

    Digital data for the Salinas Valley Geological Framework, California

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Salinas Valley, Salinas, California
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  11. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2024). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  12. f

    Data from: Uncertainties Associated with Arithmetic Map Operations in GIS

    • figshare.com
    • scielo.figshare.com
    jpeg
    Updated Aug 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JORGE K. YAMAMOTO; ANTÔNIO T. KIKUDA; GUILHERME J. RAMPAZZO; CLAUDIO B.B. LEITE (2018). Uncertainties Associated with Arithmetic Map Operations in GIS [Dataset]. http://doi.org/10.6084/m9.figshare.6991718.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Aug 22, 2018
    Dataset provided by
    SciELO journals
    Authors
    JORGE K. YAMAMOTO; ANTÔNIO T. KIKUDA; GUILHERME J. RAMPAZZO; CLAUDIO B.B. LEITE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Arithmetic map operations are very common procedures used in GIS to combine raster maps resulting in a new and improved raster map. It is essential that this new map be accompanied by an assessment of uncertainty. This paper shows how we can calculate the uncertainty of the resulting map after performing some arithmetic operation. Actually, the propagation of uncertainty depends on a reliable measurement of the local accuracy and local covariance, as well. In this sense, the use of the interpolation variance is proposed because it takes into account both data configuration and data values. Taylor series expansion is used to derive the mean and variance of the function defined by an arithmetic operation. We show exact results for means and variances for arithmetic operations involving addition, subtraction and multiplication and that it is possible to get approximate mean and variance for the quotient of raster maps.

  13. H

    CJCZO -- GIS/Map Data -- EEMT -- Jemez River Basin -- (2010-2010)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Dec 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig Rasmussen; Matej Durcik (2019). CJCZO -- GIS/Map Data -- EEMT -- Jemez River Basin -- (2010-2010) [Dataset]. https://www.hydroshare.org/resource/4f4b237579724355998a4f3c4114597e
    Explore at:
    zip(39.6 MB)Available download formats
    Dataset updated
    Dec 23, 2019
    Dataset provided by
    HydroShare
    Authors
    Craig Rasmussen; Matej Durcik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Dec 1, 2010
    Area covered
    Description

    Yearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Valles Calders, upper part of the Jemez River basin by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).

  14. A

    World Ocean Base

    • data.amerigeoss.org
    csv, esri rest +4
    Updated Apr 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2019). World Ocean Base [Dataset]. https://data.amerigeoss.org/dataset/world-ocean-base
    Explore at:
    kml, zip, esri rest, geojson, csv, htmlAvailable download formats
    Dataset updated
    Apr 24, 2019
    Dataset provided by
    AmeriGEO ArcGIS
    Area covered
    World
    Description

    The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.


    The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.

    The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".

    The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, HERE, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri.

    The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.

    The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.

    Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound

  15. d

    Map 13: ArcGIS layer showing contours of the difference in October Mean...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Map 13: ArcGIS layer showing contours of the difference in October Mean water levels from the water-year periods 1990 to 1999 and 2000 to 2009 (feet) [Dataset]. https://catalog.data.gov/dataset/map-13-arcgis-layer-showing-contours-of-the-difference-in-october-mean-water-levels-from-t
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  16. a

    La Su An Ann data - contours

    • gis-odnr.opendata.arcgis.com
    • hub.arcgis.com
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ohio Department of Natural Resources (2024). La Su An Ann data - contours [Dataset]. https://gis-odnr.opendata.arcgis.com/datasets/la-su-an-ann-data-contours
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    Ohio Department of Natural Resources
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Download .zipThis file contains the data used by the Division of Wildlife for the construction of lake maps. Data was collected in the Ohio State Plane Coordinate System for both the northern and southern state planes in the Lambert Projection Zone. Except for the lakes in extreme western Ohio which is in UTM zone 16N the majority of lakes are in UTM zone 17N and datum NAD83. Data were collected by the Ohio Division of Wildlife using a Trimble GPS Pathfinder Pro XRS receiver and Recon datalogger. Geocoding of depths typically occurred during water levels that were ± 60 cm of full recreational pool while transversing the reservoir at 100m intervals driving at a vessel speed of 2.0-2.5 m/s. Depth contour lines were derived by creating a raster file from the point bathymetry and boundary lake data. ArcGIS Spatial Analyst Interpolation tool outputs point data that is then changed into polyline contours using the Spatial Analyst Surface tool. Additional details on the digitizing process are available upon request.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesDivision of Wildlife2099 Morse Rd, Bldg G-2Columbus, OH, 43283Telephone: 614-265-6516Email: gis.support@dnr.ohio.gov

  17. e

    High resolution bathymetric compilation for Potter Cove, WAP, Antarctica,...

    • b2find.eudat.eu
    Updated May 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). High resolution bathymetric compilation for Potter Cove, WAP, Antarctica, with links to data in ArcGIS format - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/34907f27-ac9f-5a72-a7cb-5480f5be833f
    Explore at:
    Dataset updated
    May 2, 2023
    Area covered
    Antarctica
    Description

    The bathymetry raster with a resolution of 5 m x 5 m was processed from unpublished single beam data from the Argentine Antarctica Institute (IAA, 2010) and multibeam data from the United Kingdom Hydrographic Office (UKHO, 2012) with a cell size of 5 m x 5 m. A coastline digitized from a satellite image (DigitalGlobe, 2014) supplemented the interpolation process. The 'Topo to Raster' tool in ArcMap 10.3 was used to merge the three data sets, while the coastline represented the 0-m-contour to the interpolation process ('contour type option'). Subproject: JE 680/1-1

  18. World Ocean Base

    • oceangis.esri.de
    • amerigeo.org
    • +15more
    Updated Feb 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Ocean Base [Dataset]. https://oceangis.esri.de/maps/esri::world-ocean-base
    Explore at:
    Dataset updated
    Feb 25, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound

  19. Data from: The Effects of Spatial Reference Systems on the Predictive...

    • data.gov.au
    • data.wu.ac.at
    pdf
    Updated Jun 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geoscience Australia (2017). The Effects of Spatial Reference Systems on the Predictive Accuracy of Spatial Interpolation Methods [Dataset]. https://data.gov.au/dataset/097073be-8bb7-4e6c-89d1-92c91ce68d77/gmd
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 24, 2017
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Geoscience Australia has been deriving raster sediment datasets for the continental Australian Exclusive Economic Zone (AEEZ) using existing marine samples collected by Geoscience Australia and …Show full descriptionGeoscience Australia has been deriving raster sediment datasets for the continental Australian Exclusive Economic Zone (AEEZ) using existing marine samples collected by Geoscience Australia and external organisations. Since seabed sediment data are collected at sparsely and unevenly distributed locations, spatial interpolation methods become essential tools for generating spatially continuous information. Previous studies have examined a number of factors that affect the performance of spatial interpolation methods. These factors include sample density, data variation, sampling design, spatial distribution of samples, data quality, correlation of primary and secondary variables, and interaction among some of these factors. Apart from these factors, a spatial reference system used to define sample locations is potentially another factor and is worth investigating. In this study, we aim to examine the degree to which spatial reference systems can affect the predictive accuracy of spatial interpolation methods in predicting marine environmental variables in the continental AEEZ. Firstly, we reviewed spatial reference systems including geographic coordinate systems and projected coordinate systems/map projections, with particular attention paid to map projection classification, distortion and selection schemes; secondly, we selected eight systems that are suitable for the spatial prediction of marine environmental data in the continental AEEZ. These systems include two geographic coordinate systems (WGS84 and GDA94) and six map projections (Lambert Equal-area Azimuthal, Equidistant Azimuthal, Stereographic Conformal Azimuthal, Albers Equal-Area Conic, Equidistant Conic and Lambert Conformal Conic); thirdly, we applied two most commonly used spatial interpolation methods, i.e. inverse distance squared (IDS) and ordinary kriging (OK) to a marine dataset projected using the eight systems. The accuracy of the methods was assessed using leave-one-out cross validation in terms of their predictive errors and, visualization of prediction maps. The difference in the predictive errors between WGS84 and the map projections were compared using paired Mann-Whitney test for both IDW and OK. The data manipulation and modelling work were implemented in ArcGIS and R. The result from this study confirms that the little shift caused by the tectonic movement between WGS84 and GDA94 does not affect the accuracy of the spatial interpolation methods examined (IDS and OK). With respect to whether the unit difference in geographical coordinates or distortions introduced by map projections has more effect on the performance of the spatial interpolation methods, the result shows that the accuracies of the spatial interpolation methods in predicting seabed sediment data in the SW region of AEEZ are similar and the differences are considered negligible, both in terms of predictive errors and prediction map visualisations. Among the six map projections, the slightly better prediction performance from Lambert Equal-Area Azimuthal and Equidistant Azimuthal projections for both IDS and OK indicates that Equal-Area and Equidistant projections with Azimuthal surfaces are more suitable than other projections for spatial predictions of seabed sediment data in the SW region of AEEZ. The outcomes of this study have significant implications for spatial predictions in environmental science. Future spatial prediction work using a data density greater than that in this study may use data based on WGS84 directly and may not have to project the data using certain spatial reference systems. The findings are applicable to spatial predictions of both marine and terrestrial environmental variables. You can also purchase hard copies of Geoscience Australia data and other products at http://www.ga.gov.au/products-services/how-to-order-products/sales-centre.html

  20. w

    Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in...

    • data.wu.ac.at
    zip
    Updated Mar 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarvestMaster (2018). Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB) ThermalQualityAnalysisThermalResourceInterpolationResultsDataTempAt2500mErr.zip [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/OWQ4YTBlMmUtODNhYi00YTYxLTk4ZTItNzdmMTg4OTkyZDkz
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 6, 2018
    Dataset provided by
    HarvestMaster
    Area covered
    48310160c99f71fde1f18bcef5a57caeb2d7579d
    Description

    This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS).

    This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain item description documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations.

    Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015.

    Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted.

    UPDATE: Newer version of the Thermal Quality Analysis has been added here: https://gdr.openei.org/submissions/879 (Also linked below) Newer version of the Combined Risk Factor Analysis has been added here: https://gdr.openei.org/submissions/880 (Also linked below) This is one of sixteen associated .zip files relating to thermal resource interpolation results within the Thermal Quality Analysis task of the Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. This file contains the binary grid (raster) for the error associated with the predicted temperature at 2.5km.

    The sixteen files contain the results of the thermal resource interpolation as binary grid (raster) files, images (.png) of the rasters, and toolbox of ArcGIS Models used. Note that raster files ending in “pred” are the predicted mean for that resource, and files ending in “err” are the standard error of the predicted mean for that resource. Leave one out cross validation results are provided for each thermal resource.

    Several models were built in order to process the well database with outliers removed. ArcGIS toolbox ThermalRiskFactorModels contains the ArcGIS processing tools used. First, the WellClipsToWormSections model was used to clip the wells to the worm sections (interpolation regions). Then, the 1 square km gridded regions (see series of 14 Worm Based Interpolation Boundaries .zip files) along with the wells in those regions were loaded into R using the rgdal package. Then, a stratified kriging algorithm implemented in the R gstat package was used to create rasters of the predicted mean and the standard error of the predicted mean. The code used to make these rasters is called StratifiedKrigingInterpolation.R Details about the interpolation, and exploratory data analysis on the well data is provided in 9_GPFA-AB_InterpolationThermalFieldEstimation.pdf (Smith, 2015), contained within the final report.

    The output rasters from R are brought into ArcGIS for further spatial processing. First, the BufferedRasterToClippedRaster tool is used to clip the interpolations back to the Worm Sections. Then, the Mosaic tool in ArcGIS is used to merge all predicted mean rasters into a single raster, and all error rasters into a single raster for each thermal resource.

    A leave one out cross validation was performed on each of the thermal resources. The code used to implement the cross validation is provided in the R script LeaveOneOutCrossValidation.R. The results of the cross validation are given for each thermal resource.

    Other tools provided in this toolbox are useful for creating cross sections of the thermal resource. ExtractThermalPropertiesToCrossSection model extracts the predicted mean and the standard error of predicted mean to the attribute table of a line of cross section. The AddExtraInfoToCrossSection model is then used to add any other desired information, such as state and county boundaries, to the cross section attribute table. These two functions can be combined as a single function, as provided by the CrossSectionExtraction model.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Tutorials (2019). Interpolate 3D Oxygen Measurements in Monterey Bay [Dataset]. https://hub.arcgis.com/documents/18a6337067aa46acb0dd51ec01a7eaa1
Organization logo

Interpolate 3D Oxygen Measurements in Monterey Bay

Explore at:
Dataset updated
Feb 12, 2019
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Tutorials
Area covered
Monterey Bay
Description

Deoxygenation of the oceans is one of the most important issues in oceanography today. Using dissolved oxygen measurements taken at various depths in Monterey Bay, California, you'll perform a 3D geostatistical interpolation to predict the oxygen levels throughout the entire bay.In this lesson you will build skills in these areas: - Charting data with histograms and scatter plots in ArcGIS Pro- Interpolating 3D measurements- Comparing 2D interpolation- Exporting rasters - Creating a 3D animationLearn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

Search
Clear search
Close search
Google apps
Main menu