This series explores how knowledge graphs in ArcGIS enable users to connect financial data, location intelligence, and intricate supplier network relationships. Discover how this approach can reveal hidden risks, dependencies, or vulnerabilities; as well as opportunities to mitigate potential disruptions.Explore this Story Map to discover how ArcGIS Knowledge can enhance your supply chain resilience.
ArcGIS Knowledge es el nuevo producto de ESRI, el cual permite a los usuarios explorar y analizar datos espaciales, no espaciales, no estructurados y estructurados juntos para acelerar la toma de decisiones a través de un Knowledge Graph o Gráfico de Conocimiento.
GIS in the age of community health (Learn ArcGIS Path). Arm yourself with hands-on skills and knowledge of how GIS tools can analyze health data and better understand diseases._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Partial experimental results data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
this folder contains the script and data required to replicate what was demonstrated by Jethro gauld during the August 2023 RSPB GIS Knowledge Exchange. Please email jethro.gauld@rspb.org.uk if you would like the presentation to accompany this.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:
Analytics (AI)
Change detection
Feature extraction
Road assets inventory
Utility assets inventory
Map data production
Geodatabase generation
Map data Processing /Classifications
Contour Map Generation
Analytics (AI)
Change Detection
Feature Extraction
Imagery Data Processing
Ortho mosaic
Ortho rectification
Digital Ortho Mapping
Ortho photo Generation
Analytics (Geo AI)
Change Detection
Map Production
Web application development
Software testing
Data migration
Platform development
AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing
Our Value Differentiator
Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”
Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture
Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects
Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables
Pacific lamprey (Entosphenus tridentata) are native fish to the Columbia River Basin. Over the past 60 years, anthropogenic disturbances have contributed to a 95% decline of historical population numbers. Member-tribes of the Columbia River Inter-Tribal Fish Commission have acknowledged the importance of Pacific lamprey to the Columbia River ecosystem and expressed concern about the loss of an essential tribal cultural resource. As a result, the Columbia River Inter-Tribal Fish Commission created the Tribal Pacific Lamprey Restoration Plan to halt their decline, re-establish the species, and restore the population to sustainable, harvestable levels throughout their historical range. Limited knowledge about the movement and preferred habitat of larval Pacific lamprey, such as optimal habitat conditions, demographic information, and species resilience, results in challenges to monitor and protect the species. Pacific lamprey is known to use the mainstem Columbia River to migrate between their spawning grounds and the Pacific Ocean. However, dams, levees, and culverts within the Columbia River Estuary and adjacent tributaries have restricted the lamprey’s access to spawning grounds and other upstream habitats. These restrictions have prompted conservation and restoration efforts to better understand how Pacific lamprey utilizes the Columbia River Estuary. Here, we address these knowledge gaps in an effort to aid restoration initiatives by completing a Habitat Suitability Analysis to determine where optimal larval Pacific lamprey habitat may exist in the Columbia River Estuary. The project identified the spatial and temporal distribution of suitable habitat for larval Pacific lamprey and generated recommendations to address habitat-related knowledge gaps and further evaluate anthropogenic threats to their recovery. The results of the Habitat Suitability Analysis suggest that habitat conditions in the Columbia River itself are unable to support larval lamprey year-round, but may provide suitable habitat on a seasonal basis due to spatial and temporal limitations. However, we stress that our analyses were necessarily limited to aquatic conditions and that the temperature of the water column used in our analyses may differ from the temperature within fine sediments, where larval lamprey burrow. Our results imply that suitable lamprey habitat is present at times throughout the year in the Columbia River Estuary, and these locations can be used to support habitat restoration and conservation strategies for improving the species’ recovery. Anthropogenic threats to the Columbia River continue to alter habitat conditions, including average water temperature, salinity, and sedimentation. Laboratory experiments have provided insight into the potential impacts of changing temperature and salinity on larval Pacific lamprey, where elevated water temperatures can affect their development and elevated salinity levels can result in larval mortality. In addition, anthropogenic disturbances such as dams, levees, and culverts have cut off the Columbia River Estuary’s floodplain habitats from the mainstem Columbia River, decreased sedimentation rates, and separated adult lamprey from the floodplains and tributaries that they use to spawn. The presence of these barriers in the region can inhibit the distribution of fine sediments in the river, limiting where larval lamprey burrow and develop. The burrowing behavior of larval lamprey has yet to fully be investigated in the Columbia River Estuary. Limited research may be due to the lack of resources for studying Pacific lamprey’s life cycle, habitat, and population dynamics since they are not federally designated as an endangered species, like resident salmonid species. This has further added to the challenge of understanding the species and restoring its population to sustainable numbers. To the best of our knowledge, this project is the first to explore spatial and temporal trends of suitable larval Pacific lamprey habitat conditions in the Columbia River Estuary. The Habitat Suitability Analysis provides technical information about the presence and distribution of suitable conditions to address habitat-related uncertainties. The member-tribes of the Columbia River Inter-Tribal Fish Commission and their collaborators can incorporate the information into current and future Pacific lamprey restoration, conservation, and education programs to enhance general understanding of lamprey populations throughout the Columbia River Basin. Key recommendations are provided to address additional knowledge gaps and prioritize future restoration projects in the Columbia River Basin including the refinement of the Habitat Suitability Analysis, evaluation of barrier effects on Pacific lamprey passage, and assessment of climate change scenarios on larval lamprey habitat. The Habitat Suitability Analysis uses salinity, temperature,...
Esri's Water Resources GIS Platform offers a comprehensive suite of tools and resources designed to modernize water resource management. It emphasizes geospatial solutions for monitoring, analyzing, and modeling water systems, helping decision-makers tackle challenges like drought resilience, flood mitigation, and environmental protection. By leveraging the capabilities of ArcGIS, users can transform raw water data into actionable insights, ensuring more efficient and effective water resource management.A central feature of the platform is Arc Hydro, a specialized data model and toolkit developed for GIS-based water resource analysis. This toolset allows users to integrate, analyze, and visualize water datasets for applications ranging from live stream gauge monitoring to pollution control. Additionally, the platform connects users to the ArcGIS Living Atlas of the World, which offers extensive water-related datasets such as rivers, wetlands, and soils, supporting in-depth analyses of hydrologic conditions. The Hydro Community further enhances collaboration, enabling stakeholders to share expertise, discuss challenges, and build innovative solutions together.Esri’s platform also provides training opportunities and professional services to empower users with technical knowledge and skills. Through instructor-led courses, documentation, and best practices, users gain expertise in using ArcGIS and Arc Hydro for their specific water management needs. The combination of tools, datasets, and community engagement makes Esri's water resources platform a powerful asset for advancing sustainable water management initiatives across public and private sectors.
NOTE: An updated Introduction to ArcGIS GeoEvent Server Tutorial is available here. It is recommended you use the new tutorial for getting started with GeoEvent Server. The old Introduction Tutorial available on this page is relevant for 10.8.x and earlier and will not be updated.The Introduction to GeoEvent Server Tutorial (10.8.x and earlier) introduces you to the Real-Time Visualization and Analytic capabilities of ArcGIS GeoEvent Server. GeoEvent Server allows you to:
Incorporate real-time data feeds in your existing GIS data and IT infrastructure. Perform continuous processing and analysis on streaming data, as it is received. Produce new streams of data that can be leveraged across the ArcGIS system.
Once you have completed the exercises in this tutorial you should be able to:
Use ArcGIS GeoEvent Manager to monitor and perform administrative tasks. Create and maintain GeoEvent Service elements such as inputs, outputs, and processors. Use GeoEvent Simulator to simulate event data into GeoEvent Server. Configure GeoEvent Services to append and update features in a published feature service. Work with processors and filters to enhance and direct GeoEvents from event data.
The knowledge gained from this tutorial will prepare you for other GeoEvent Server tutorials available in the ArcGIS GeoEvent Server Gallery.
Releases
Each release contains a tutorial compatible with the version of GeoEvent Server listed. The release of the component you deploy does not have to match your version of ArcGIS GeoEvent Server, so long as the release of the component is compatible with the version of GeoEvent Server you are using. For example, if the release contains a tutorial for version 10.6; this tutorial is compatible with ArcGIS GeoEvent Server 10.6 and later. Each release contains a Release History document with a compatibility table that illustrates which versions of ArcGIS GeoEvent Server the component is compatible with.
NOTE: The release strategy for ArcGIS GeoEvent Server components delivered in the ArcGIS GeoEvent Server Gallery has been updated. Going forward, a new release will only be created when
a component has an issue,
is being enhanced with new capabilities,
or is not compatible with newer versions of ArcGIS GeoEvent Server.
This strategy makes upgrades of these custom
components easier since you will not have to
upgrade them for every version of ArcGIS GeoEvent Server
unless there is a new release of
the component. The documentation for the
latest release has been
updated and includes instructions for updating
your configuration to align with this strategy.
Latest
Release 7 - March 30, 2018 - Compatible with ArcGIS GeoEvent Server 10.6 and later.
Previous
Release 6 - January 12, 2018 - Compatible with ArcGIS GeoEvent Server 10.5 thru 10.8.
Release 5 - July 30, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.
Release 4 - July 30, 2015 - Compatible with ArcGIS GeoEvent Server 10.3.x.
Release 3 - April 24, 2015 - Compatible with ArcGIS GeoEvent Server 10.3.x. Not available.
Release 2 - January 22, 2015 - Compatible with ArcGIS GeoEvent Server 10.3.x. Not available.
Release 1 - April 11, 2014 - Compatible with ArcGIS GeoEvent Server 10.2.x.
This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. Esri created this vector tile basemap from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. This version of the map is rendered in a style similar to the Esri Street Map. The OSM Daylight map will be updated every month with the latest version of OSM Daylight data. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spatio-temporal prediction (STP) is a fundamental research area in Geographic Information Science (GIS), offering estimations of unobserved phenomena across space and time. STP models are extensively applied to address geographic challenges such as weather forecasting and hazard warnings. Despite accuracy gains from data-driven AI technologies, current STP research often neglects the contributions of geospatial effects, which have inspired the development of GIS-style STP models, including dependence learning from the spatial proximity effect, regional learning from the spatial heterogeneity effect, and transfer learning from the geographic similarity effect. This study seeks to determine whether these geospatial effects enhance STP performance and how they can be leveraged to optimize GIS-style model design. We develop a predictability framework using geographic entropy (GE) for the former question and a knowledge graph KG for the latter. Specifically, GE comprises three entropy methods to evaluate changes in predictability under the influence of three geospatial effects. These results are organized using KG to provide knowledge services that optimize the design of three GIS-style models. Experiments using a real-world dataset consisting of five human activities demonstrate the effectiveness of our framework. Specifically, our framework quantifies gains or reductions in predictability under geospatial effects and depicts their influence structure via KG.
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
This data is intended to assist staff and visitors to the California Energy Commission headquarters, 715 P Street, 3rd Floor, Sacramento, CA 95814 with nearby parking and transportation information. This information was collected from various sources and updated to the best of our knowledge. If you notice any inaccuracies, please email us at gis@energy.ca.gov and we will update this information. For more information on conditions of use, please visit https://www.energy.ca.gov/conditions-of-use.Data Sources:City of Sacramento: https://www.cityofsacramento.gov/public-works/parkingCalifornia Department of General Services: https://www.dgs.ca.gov/OFAM/Resources/Page-Content/Office-of-Fleet-and-Asset-Management-Resources-List-Folder/Parking-Locations-and-Hours-of-Operation?search=parkingPriority Parking: https://www.priorityparking.com/Sacramento Regional Transit: https://www.sacrt.com/systemmap/
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Data was hand drawn on USGS Topographic quads by foresters of the Vermont Department of Forests, Parks, & Recreation using orthophotos, survey data, and personal knowledge of the area as references.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a complete dataset of all outputs produced from a survey assessing environmental knowledge (and knowledge gas) across local communities in the Iveragh peninsula, Co. Kerry, Ireland, during the first months of 2021. The dataset includes chart and figures, maps produced using GIS, mind maps, spreadsheets, and a supporting document containing all relevant metadata.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature layer is a line feature class representing the airport runways in California for which the Caltrans HQ Aeronautics maintains information. For planning purpose only
The maps and data are made available to the public solely for informational purposes. Information provided in the Caltrans GIS Data Library is accurate to the best of our knowledge and is subject to change on a regular basis, without notice. While the GIS Data Management Branch makes every effort to provide useful and accurate information, we do not warrant the information to be authoritative, complete, factual, or timely. Information is provided on an "as is" and an "as available" basis. The Department of Transportation is not liable to any party for any cost or damages, including any direct, indirect, special, incidental, or consequential damages, arising out of or in connection with the access or use of, or the inability to access or use, the Site or any of the Materials or Services described herein.
In this edition we highlight the use of Assessor's data, GIS workflows and Fire Department knowledge to streamline the process of dispatching the appropriate fire apparatus to emergency situations. We also talk about some cool apps developed with Parks and Rec and Water Resources for citizens to look up valuable information regarding trail closures and flood zones.
https://www.statcan.gc.ca/eng/reference/licencehttps://www.statcan.gc.ca/eng/reference/licence
Statistics Canada Census Data from 2021. This dataset includes the knowledge of official languages data provided by Statistics Canada joined with the census tracts. Each topic covered by the census was exported as a separate table. Each table contains the total, male, and female characteristics as fields for each census tract. Topics range from population, age and sex, immigration, language, family and households, income, education, and labour. For more information on definitions of terms used in the tables and other notes, refer to Statistics Canada's 2021 Census.
This series explores how knowledge graphs in ArcGIS enable users to connect financial data, location intelligence, and intricate supplier network relationships. Discover how this approach can reveal hidden risks, dependencies, or vulnerabilities; as well as opportunities to mitigate potential disruptions.Explore this Story Map to discover how ArcGIS Knowledge can enhance your supply chain resilience.